RESUMO
Chronic inflammation, which is dominated by macrophage-involved inflammatory responses, is an instigator of cancer initiation. Macrophages are the most abundant immune cells in healthy lungs, and associated with lung tumor development and promotion. PD-L1 is a negative molecule in macrophages and correlated with an immunosuppressive function in tumor environment. Macrophages expressing PD-L1, rather than tumor cells, exhibits a critical role in tumor growth and progression. However, whether and how PD-L1 in macrophages contributes to inflammation-induced lung tumorigenesis requires further elucidation. Here, we found that higher expression of PD-L1 in CD11b+ CD206+ macrophages was positively correlated with tumor progression and PD-1+ CD8+ T cells population in human adenocarcinoma patients. In the urethane-induced inflammation-driven lung adenocarcinoma (IDLA) mouse model, the infiltration of circulating CD11bhigh F4/80+ monocyte-derived macrophages (MoMs) was increased in pro-tumor inflamed lung tissues and lung adenocarcinoma. PD-L1 was mainly upregulated in MoMs associated with enhanced T cells exhaustion in lung tissues. Anti-PD-L1 treatment can reduce T cells exhaustion at pro-tumor inflammatory stage, and then inhibit tumorigenesis in IDLA. The pro-tumor lung inflammation depended on TNF-α to upregulate PD-L1 and CSN6 expression in MoMs, and induced cytokines production by alveolar type-II cells (AT-II). Furthermore, inflammatory AT-II cells could secret TNF-α to upregulate PD-L1 expression in bone-marrow driven macrophages (BM-M0). Inhibition of CSN6 decreased PD-L1 expression in TNF-α-activated macrophage in vitro, suggesting a critical role of CSN6 in PD-L1 upregulation. Thus, pro-tumor inflammation can depend on TNF-α to upregulate PD-L1 in recruited MoMs, which may be essential for lung tumorigenesis.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Pneumonia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Camundongos , Pneumonia/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uretana/metabolismoRESUMO
Inflammatory microenvironment may take a promoting role in lung tumorigenesis. However, the molecular characteristics underlying inflammation-related lung cancer remains unknown. In this work, the inflammation-related lung tumorigenesis mouse model was established by treated with B(a)P (1 mg/mouse, once a week for 4 weeks), followed by LPS (2.5 µg/mouse, once every 3 weeks for five times), the mice were sacrificed 30 weeks after exposure. TMT-labeled quantitative proteomics and untargeted metabolomics were used to interrogate differentially expressed proteins and metabolites in different mouse cancer tissues, followed by integrated crosstalk between proteomics and metabolomics through Spearman's correlation analysis. The result showed that compared with the control group, 103 proteins and 37 metabolites in B(a)P/LPS group were identified as significantly altered. By searching KEGG pathway database, proteomics pathways such as Leishmaniasis, Asthma and Intestinal immune network for IgA production, metabolomics pathways such as Vascular smooth muscle contraction, Linoleic acid metabolism and cGMP-PKG signaling pathway were enriched. A total of 22 pathways were enriched after conjoint analysis of the proteomic and metabolomics, and purine metabolism pathway, the unique metabolism-related pathway, which included significantly altered protein (adenylate cyclase 4, ADCY4) and metabolites (L-Glutamine, guanosine monophosphate (GMP), adenosine and guanosine) was found. Results suggested purine metabolism may contribute to the inflammation-related lung tumorigenesis, which may provide novel clues for the therapeutic strategies of inflammation-related lung cancer.
Assuntos
Neoplasias Pulmonares , Pneumonia , Camundongos , Animais , Proteômica , Lipopolissacarídeos/toxicidade , Carcinogênese/induzido quimicamente , Transformação Celular Neoplásica , Pulmão/metabolismo , Metabolômica , Inflamação/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Purinas/toxicidade , Microambiente TumoralRESUMO
Humans are often exposed to mixtures of environmental pollutants especially environmental chemical carcinogens, representing a significant environmental health issue. However, our understanding on the carcinogenic effects and mechanisms of environmental carcinogen mixture exposures is limited and mostly relies on the findings from studying individual chemical carcinogens. Both arsenic and benzo(a)pyrene (BaP) are among the most common environmental carcinogens causing lung cancer and other types of cancer in humans. Millions of people are exposed to arsenic via consuming arsenic-contaminated drinking water and even more people are exposed to BaP via cigarette smoking and consuming BaP-contaminated food. Thus arsenic and BaP combined-exposure in humans is common. Previous epidemiology studies indicated that arsenic-exposed people who were cigarette smokers had significantly higher lung cancer risk than those who were non-smokers. Since BaP is one of the major carcinogens in cigarette smoke, it has been speculated that arsenic and BaP combined-exposure may play important roles in the increased lung cancer risk observed in arsenic-exposed cigarette smokers. In this review, we summarize important findings and inconsistencies about the co-carcinogenic effects and underlying mechanisms of arsenic and BaP combined-exposure and propose new areas for future studies. A clear understanding on the mechanism of co-carcinogenic effects of arsenic and BaP combined exposure may identify novel targets to more efficiently treat and prevent lung cancer resulting from arsenic and BaP combined-exposure.
Assuntos
Arsênio/efeitos adversos , Benzo(a)pireno/efeitos adversos , Cocarcinogênese/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Animais , Carcinógenos/toxicidade , Cocarcinogênese/patologia , Humanos , Neoplasias Pulmonares/patologiaRESUMO
Enhanced fatty acid synthesis provides proliferation and survival advantages for tumor cells. Apelin is an adipokine, which serves as a ligand of G protein-coupled receptors that promote tumor growth in malignant cancers. Here, we confirmed that apelin increased sterol regulatory element-binding protein 1 (SREBP1) activity and induced the expression of glutamine amidotransferase for deamidating high-mobility group A 1 (HMGA1) to promote fatty acid synthesis and proliferation of lung cancer cells. This post-translational modification stabilized the HMGA1 expression and enhanced the formation of the apelin-HMGA1-SREBP1 complex to facilitate SREBP1 activity for lipid metabolism and lung cancer cell growth. We uncovered the pivotal role of apelin-mediated deamidation of HMGA1 in lipid metabolism and tumorigenesis of lung cancer cells.
Assuntos
Proteína HMGA1a , Neoplasias Pulmonares , Humanos , Apelina , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Ácidos Graxos , Proteína HMGA1a/genética , Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismoRESUMO
PURPOSE: Among the lung cancer types, non-small cell lung cancer (NSCLC) is prominent and less responsive to chemotherapy. The current chemotherapeutics for NSCLC are associated with several dose-limiting side effects like bone-marrow suppression, neurotoxicity, nephrotoxicity, and ototoxicity, etc. which are causing non-compliance in patients. Many tumors, including breasts, lung, ovarian, etc. overexpress PPAR-γ receptors and COX-2 enzymes, which play a crucial role in tumor progression, angiogenesis, and metastasis. Lack of PPAR-γ activation and overproduction of prostaglandins, result in uncontrolled activation of Ras/Raf/Mek ultimately, NF-κB mediated tumor proliferation. This study aimed to investigate the anti-cancer potential of PPAR-γ agonist Pioglitazone combined with COX-2 inhibitor Celelcoxib in NSCLC. METHODS: Sixty adult Balb/C male mice were classified into sham control, disease control, and treatment groups. Mice were treated with Nicotine-derived nitrosamine ketone (NNK) (10 mg/kg), pioglitazone (10 & 20 mg/kg) and celecoxib (25 & 50 mg/kg). Weekly body weight, food intake, mean survival time & % increased life span were determined. Tumor weight and histopathological analysis were performed at the end of the study. RESULTS: The significant tumor reducing potential of pioglitazone combined with celecoxib was observed (p < 0.05). The treatment groups (treated with pioglitazone and celecoxib) showed a remarkable decrease in lung tumor weight, improved life span and mean survival time (p < 0.05). Histopathological studies confirm that treatment groups (treated with pioglitazone and celecoxib) reframed the lung architecture compared to disease control. CONCLUSION: Preliminary results revealed that pioglitazone adjunacy with celecoxib may be an effective chemo-preventive agent against NNK induce NSCLC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , PPAR gama/agonistas , Pioglitazona/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Peso Corporal , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Relação Dose-Resposta a Droga , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pioglitazona/uso terapêutico , Análise de Sobrevida , Carga TumoralRESUMO
Iron oxide nanoparticles (magnetite) have been widely used in industry and medicine. However, the safety assessment of magnetite has not been fully completed. The present study was conducted to assess effects of magnetite on carcinogenic activity, using a medium-term bioassay protocol. A total of 100 male Fischer 344 rats, 6 weeks old, were randomly divided into 5 groups of 20 animals each, and given a basal diet and drinking water containing 0 or 0.1% of N-bis(2-hydroxypropyl)nitrosamine (DHPN) for 2 weeks. Two weeks later, the rats were intratracheally instilled magnetite 7 times at an interval of 4 weeks, at the doses of 0, 1.0 or 5.0 mg/kg body weight, and sacrificed at the end of the experimental period of 30 weeks. The multiplicities of macroscopic lung nodules and histopathologically diagnosed bronchiolo-alveolar hyperplasia, induced by DHPN, were both significantly decreased by the high dose of magnetite. The expression of minichromosome maintenance (MCM) protein 7 in non-tumoral alveolar epithelial cells, and the number of CD163-positive macrophages in tumor nodules were both significantly reduced by magnetite. It is suggested that magnetite exerts inhibitory effects against DHPN-induced lung tumorigenesis, by the reduction of alveolar epithelial proliferation and the M2 polarization of tumor-associated macrophages.
Assuntos
Carcinogênese/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nitrosaminas/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344RESUMO
BACKGROUND: Cell division control (CDC) 42 has been involved in the regulation of diverse cancers. Macrophage recruitment plays an important role in the pathogenesis and development of tumor. However, it remains unclear whether CDC42 contributes to macrophage recruitment and lung tumorigenesis in vivo. METHODS: Small interference RNA (siRNA) was used to knock down CDC42 in the Lewis lung carcinoma (LLC)1. The invasion capability of CDC42 knockdown LLC1 cells was evaluated. LLC1 cells with CDC42 targeted small hairpin RNA (shRNA) were inoculated into C57BL/6 mice to establish the tumor-bearing animal model Tumor size and metastasis related proteins were measured. In addition, the invasion of macrophages in the tumor site as well as macrophage chemokine were also determined in the model. RESULTS: The capacity of invasion and metastasis of LLC1 cells significantly decreased when CDC42 was knocked down. When inoculated with CDC42 knockdown LLC1 cells in vivo, the tumor size and metastasis related proteins levels both decreased. The invasion capacity of macrophages and the associated macrophage chemokine were also significantly down-regulated. CONCLUSION: Our data suggest that the inhibition of CDC42 expression in lung cancer cells can significantly prevent the pathogenesis and development of tumor in an allograft tumor model in vivo, which might provide a novel therapeutic target and potential strategy for lung cancer treatment in the future.
Assuntos
Carcinogênese/patologia , Carcinoma Pulmonar de Lewis/prevenção & controle , Modelos Animais de Doenças , Macrófagos/imunologia , RNA Interferente Pequeno/genética , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Apoptose , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
BACKGROUND: Experimental reproducibility in mouse models is impacted by both genetics and environment. The generation of reproducible data is critical for the biomedical enterprise and has become a major concern for the scientific community and funding agencies alike. Among the factors that impact reproducibility in experimental mouse models is the variable composition of the microbiota in mice supplied by different commercial vendors. Less attention has been paid to how the microbiota of mice supplied by a particular vendor might change over time. RESULTS: In the course of conducting a series of experiments in a mouse model of malaria, we observed a profound and lasting change in the severity of malaria in mice infected with Plasmodium yoelii; while for several years mice obtained from a specific production suite of a specific commercial vendor were able to clear the parasites effectively in a relatively short time, mice subsequently shipped from the same unit suffered much more severe disease. Gut microbiota analysis of frozen cecal samples identified a distinct and lasting shift in bacteria populations that coincided with the altered response of the later shipments of mice to infection with malaria parasites. Germ-free mice colonized with cecal microbiota from mice within the same production suite before and after this change followed by Plasmodium infection provided a direct demonstration that the change in gut microbiota profoundly impacted the severity of malaria. Moreover, spatial changes in gut microbiota composition were also shown to alter the acute bacterial burden following Salmonella infection, and tumor burden in a lung tumorigenesis model. CONCLUSION: These changes in gut bacteria may have impacted the experimental reproducibility of diverse research groups and highlight the need for both laboratory animal providers and researchers to collaborate in determining the methods and criteria needed to stabilize the gut microbiota of animal breeding colonies and research cohorts, and to develop a microbiota solution to increase experimental rigor and reproducibility.
Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Malária/fisiopatologia , Plasmodium yoelii/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise Espaço-TemporalRESUMO
Glyburide (Gly) could inhibit NLRP3 inflammasome, as well as could be treated with Type 2 diabetes as a common medication. Despite more and more studies show that Gly could influence cancer risk and tumor growth, it remains unclear about the effect of Gly in lung tumorigenesis. To evaluate whether Gly inhibited lung tumorigenesis and explore the possible mechanisms, a benzo(a)pyrene [B(a)p] plus lipopolysaccharide (LPS)-induced non-diabetes mice model was established with B(a)p for 4 weeks and once a week (1 mg/mouse), then instilled with LPS for 15 weeks and once every 3 weeks (2.5 µg/mouse) intratracheally. Subsequently, Gly was administered by gavage (10 µl/g body weight) 1 week before B(a)p were given to the mice until the animal model finished (when Gly was first given named Week 0). At the end of the experiment called Week 34, we analyzed the incidence, number and histopathology of lung tumors, and detected the expression of NLRP3, IL-1ß, and Cleaved-IL-1ß protein. We found that vehicles and tricaprylin+Gly could not cause lung carcinogenesis in the whole process. While the incidence and mean tumor count of mice in B(a)P/LPS+Gly group were decreased compared with B(a)p/LPS group. Moreover, Gly could alleviate inflammatory changes and reduce pathological tumor nest numbers compared with mice administrated with B(a)p/LPS in histopathological examination. The B(a)p/LPS increased the expression of NLRP3, IL-1ß, and Cleaved-IL-1ß protein significantly than Vehicle, whereas decreased in B(a)P/LPS+Gly (0.96 mg/kg) group compared with B(a)p/LPS group. Results suggested glyburide might inhibit NLRP3 inflammasome to attenuate inflammation-related lung tumorigenesis caused by intratracheal instillation of B(a)p/LPS in non-diabetes mice.
Assuntos
Diabetes Mellitus Tipo 2 , Lipopolissacarídeos , Animais , Benzo(a)pireno , Carcinogênese , Glibureto , Inflamassomos , Inflamação , Interleucina-1beta , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLRRESUMO
BACKGROUND: Inflammatory micro-environment has been proposed to play a critical role in lung tumorigenesis. NLRP3 is known as an intracellular receptor involving inflammation and has been reported which is increasingly associated with tumor development, but the role in inflammation-driven lung cancer has not been fully clarified. In this study, we investigated whether lipopolysaccharide (LPS)-induced pulmonary inflammation could contribute to lung tumorigenesis induced by benzo(a)pyrene [B(a)p] in C57BL/6J mice and the role of NLRP3 in the pathogenesis. METHODS: NLRP3-/- mice and C57BL/6J mice (wide-type, WT) were instilled intratracheally with B(a)p (1 mg/mouse) once a week for 4 times [the week of the last time of B(a)p treatment named Week 0], and mice were then instilled intratracheally with LPS at Week 3, 2.5 µg/mouse, once every three weeks for 5 times. At Week 30, the incidence, number, size and histopathology of lung tumor were analyzed. RESULTS: Mice exposed to B(a)p or B(a)p plus LPS could induce lung tumors, whereas LPS or vehicles treatment could not induce lung tumorigenesis. In WT mice, B(a)p plus LPS exposure significantly increased tumor incidence, mean tumor count and tumor size of visible tumors of lungs compared with B(a)p treatment alone, and NLRP3 deletion inhibited lung tumorigenesis induced by B(a)p or B(a)p plus LPS. Histopathological examination found LPS-induced pulmonary inflammatory changes enhanced lung tumorigenesis induced by B(a)p in WT mice, deletion of NLRP3 improved the inflammatory changes induced by LPS and the number and size of pathological tumor nests induced by B(a)p or B(a)p plus LPS. In addition, we found B(a)p treatment and B(a)p plus LPS treatment predominately induced the development of adenoma. CONCLUSION: LPS enhanced B(a)p-induced lung tumorigenesis in WT and NLRP3-/- mice of C57BL/6J strain, and NLRP3 deletion inhibits lung tumorigenesis induced by B(a)p or B(a)p plus LPS.
Assuntos
Benzo(a)pireno/toxicidade , Carcinogênese/metabolismo , Lipopolissacarídeos/toxicidade , Neoplasias Pulmonares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Feminino , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. NSCLC diagnosed at an early stage can be highly curable with a positive prognosis, but biomarker limitations make it difficult to diagnose lung cancer at an early stage. To identify biomarkers for lung cancer development, we previously focused on the oncogenic roles of transcription factor TFAP2C in lung cancers and revealed the molecular mechanism of several oncogenes in lung tumorigenesis based on TFAP2C-related microarray analysis. RESULTS: In this study, we analyzed microarray data to identify tumor suppressor genes and nine genes downregulated by TFAP2C were screened. Among the nine genes, we focused on growth arrest and DNA-damage-inducible beta (GADD45B) and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) as representative TFAP2C-regulated tumor suppressor genes. It was observed that overexpressed TFAP2C resulted in inhibition of GADD45B and PMAIP1 expressions at both the mRNA and protein levels in NSCLC cells. In addition, downregulation of GADD45B and PMAIP1 by TFAP2C promoted cell proliferation and cell motility, which are closely associated with NSCLC tumorigenesis. CONCLUSION: This study indicates that GADD45B and PMAIP1 could be promising tumor suppressors for NSCLC and might be useful as prognostic markers for use in NSCLC therapy.
Assuntos
Antígenos de Diferenciação/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Neoplasias Pulmonares/genética , Fator de Transcrição AP-2/genética , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , RNA Mensageiro/análise , RNA Interferente Pequeno/análiseRESUMO
WDR77 (WD repeat domain 77) is expressed during earlier lung development when cells are rapidly proliferating, but is absent from adult lung. It is re-activated during lung tumorigenesis and is essential for lung cancer cell proliferation. Signalling pathways/molecules that control WDR77 gene expression are unknown. Promoter mapping, gel shift assay and ChIP revealed that the WDR77 promoter contains bona fide response elements for E2F and GATA transcriptional factors as demonstrated in prostate cancer, lung cancer and erythroid cells, as well as in mouse lung tissues. The WDR77 promoter is transactivated by E2F1, E2F3, GATA1 and GATA6, but suppressed by E2F6, GATA1 and GATA3 in prostate cancer PC3 cells. WDR77 expression is associated with E2F1, E2F3, GATA2 and GATA6 occupancy on the WDR77 gene, whereas, in contrast, E2F6, GATA1 and GATA3 occupancy is associated with the loss of WDR77 expression during erythroid maturation and lung development. More importantly, the loss of WDR77 expression that results from E2F and GATA switches is required for cellular differentiation of erythroid and lung epithelial cells. In contrast, lung cancer cells avoid post-mitotic differentiation by sustaining WDR77 expression. Altogether, the present study provides a novel molecular mechanism by which WDR77 is regulated during erythroid and lung development and lung tumorigenesis.
Assuntos
Diferenciação Celular , Fatores de Transcrição E2F/fisiologia , Fatores de Transcrição GATA/fisiologia , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido NucleicoRESUMO
Some chemicals are known to be lung carcinogens in rodents. While many studies using two-stage models have administered medium or high doses to mice, few have tested lower doses. The dose dependence of urethane, 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and benzo[a]pyrene (B[a]P), three well-known lung carcinogens at high doses, has not been sufficiently reported in lower dose ranges. Our study evaluated the tumorigenicity of urethane, NNK, and B[a]P at 26 weeks after a single intraperitoneal administration of each compound within medium to low dose in male and/or female A/JJmsSlc (A/J) mice. Dose-dependent tumorigenesis was demonstrated histopathologically for the three compounds. These results suggested that the tumorigenicity of these chemicals is dose dependent in A/J mice, even at lower doses than previously reported.
RESUMO
Insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane heterotetramer that is activated by Insulin-like growth factor 1 and is crucial for tumor transformation and survival of malignant cells. Importantly, IGF-1R overexpression has been reported in many different cancers, implicating this receptor as a potential target for anticancer therapy. Picropodophyllin (PPP) is a potent inhibitor of IGF-1R and has antitumor efficacy in several cancer types. However, the chemopreventive effect of PPP in lung tumorigenesis has not been investigated. In this study, we investigated the chemopreventive activity of PPP in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and PPP was given by nasal inhalation to female A/J mice. Lung tumorigenesis was assessed by tumor multiplicity and tumor load. PPP significantly decreased tumor multiplicity and tumor load. Tumor multiplicity and load were decreased by 52% and 78% respectively by 4 mg/ml aerosolized PPP. Pharmacokinetics analysis showed good bioavailability of PPP in lung and plasma. Treatment with PPP increased staining for cleaved caspase-3 and decreased Ki-67 in lung tumors, suggesting that the lung tumor inhibitory effects of PPP were partially through inhibition of proliferation and induction of apoptosis. In human lung cancer cell lines, PPP inhibited cell proliferation, and also inhibited phosphorylation of IGF-1R downstream targets, AKT and MAPK, ultimately resulting in increased apoptosis. PPP also reduced cell invasion in lung cancer cell lines. In view of our data, PPP merits further investigation as a promising chemopreventive agent for human lung cancer.
Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Podofilotoxina/análogos & derivados , Receptor IGF Tipo 1/efeitos dos fármacos , Animais , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêuticoRESUMO
Background: It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods: RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results: This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion: In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.
RESUMO
BACKGROUND: This study was aimed to evaluate protective and therapeutic effects of a specific mixture, containing vitamin C, lysine, proline, epigallocatechin gallate and zinc, as well as alpha-1-antitrypsin protein on lung tumorigenesis induced by benzo(a) pyrene [B(a)P] in mice. MATERIALS AND METHODS: Swiss albino mice were divided into two main experiments, experiment (1) the mice were injected with 100 mg/kg B(a)P and lasted for 28 weeks, while experiment (2) the mice were injected with 8 doses each of 50 mg/kg B(a)P and lasted for 16 weeks. Each experiment (1 and 2) divided into five groups, group (I) received vehicle, group (II) received the protector mixture, group (III) received the carcinogen B(a)P, group (IV) received the protector together with the carcinogen (simultaneously) and group (V) received the carcinogen then the protector (consecutively). RESULTS: Total sialic acid, thiobarbituric acid reactive substances, vascular epithelial growth factor, hydroxyproline levels, as well as elastase and gelatinase activities showed significant elevation in group (III) in the two experiments comparing to control group (P < 0.001). These biochemical alterations were associated with histopathological changes. Administration of the protector in group IV and group V causes significant decrease in such parameters with improvement in histopathological alterations with improvement in histopathological alterations when compared with group III in the two experiments (P < 0.001). CONCLUSION: The present protector mixture has the ability to suppress neoplastic alteration and restore the biochemical and histopathological parameters towards normal on lung carcinogenesis induced by benzo(a) pyrene in mice. Furthermore, the present mixture have more protective rather than therapeutic action.
RESUMO
We investigated the chemopreventive effects of beer, nonalcoholic beers (NABs), and beer-components (glycine betaine (GB)) on NNK-induced lung tumorigenesis in A/J mice, and the possible mechanisms underlying the antitumorigenic effects of beer, NABs, and beer-components. Beer, NABs, and GB reduced NNK-induced lung tumorigenesis. We investigated the antimutagenicity of beer, NABs and beer-components (GB and pseudouridine (PU)) toward the mutagenicity of 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Beer, NABs, and beer components were antimutagenic toward MNNG and NNK in the Ames test using S. typhimurium TA1535. In contrast, MNNG and NNK mutagenicity detected in S. typhimurium YG7108, a strain lacking O6-methylguanine DNA methyltransferases (ogtST and adaST) did not decrease in the presence of beer, NABs, or beer components, suggesting that they may mediate its antimutagenic effect by enhancing DNA damage repair. Phosphorylation of Akt and STAT3, with or without epidermal growth factor stimulation, in lung epithelial-like A549 cells were significantly decreased following beer, NABs, GB and PU. They targeted both the initiation and growth/progression steps of carcinogenesis, specifically via antimutagenesis, stimulation of alkyl DNA-adduct repair, and suppression of Akt- and STAT3- mediated growth signaling. GB and PU may contribute, in part, to the biological effects of beer and NABs via the suppression of Akt and STAT3 phosphorylation.
RESUMO
BACKGROUND: Previously, we reported the inhibitory effect of Actinidia arguta juice, known as sarunashi juice (sar-j) in Japan, on mutagenesis, inflammation, and mouse skin tumorigenesis. The components of A. arguta responsible for the anti-mutagenic effects were identified to be water-soluble, heat-labile phenolic compounds. We proposed isoquercetin (isoQ) as a candidate anticarcinogenic component. In this study, we sought to investigate the chemopreventive effects of A. arguta juice and isoQ on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice, and identify the possible mechanisms underlying the anti-tumorigenic effects of A. arguta. RESULTS: The number of tumor nodules per mouse lung in the group injected with NNK and administered A. arguta juice orally was significantly lower than that in the group injected with NNK only. Oral administration of isoQ also reduced the number of nodules in the mouse lungs. As expected, the mutagenicity of NNK and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) detected using S. typhimurium TA1535 decreased in the presence of sar-j. However, NNK and MNNG mutagenicity detected using S. typhimurium YG7108, a strain lacking the O6-methylguanine DNA methyltransferases (ogtST and adaST) did not decrease in the presence of sar-j suggesting that sar-j may mediate its antimutagenic effect by enhancing the DNA damage repair by ogtST and adaST. Phosphorylation of Akt, with or without epidermal growth factor stimulation, in A549 cells was significantly decreased following sar-j and isoQ treatment, indicating that components in sar-j including isoQ suppressed the PI3K/AKT signaling pathways. CONCLUSIONS: Sar-j and isoQ reduced NNK-induced lung tumorigenesis. Sar-j targets both the initiation and growth/progression steps during carcinogenesis, specifically via anti-mutagenesis, stimulation of alkyl DNA adduct repair, and suppression of Akt-mediated growth signaling. IsoQ might contribute in part to the biological effects of sar-j via suppression of Akt phosphorylation, but it may not be the main active ingredient.
RESUMO
Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.
Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Animais , Compostos Azo , Vacinas Anticâncer/uso terapêutico , Caproatos , Carcinogênese , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Glutamina/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Camundongos , Microambiente TumoralRESUMO
BACKGROUND: A healthy alveolar epithelium is critical to the gas exchange function of the lungs. As the major cell type of alveolar epithelium, alveolar type 2 (AT2) cells play a critical role in maintaining pulmonary homeostasis by serving as alveolar progenitors during lung injury, inflammation, and repair. Dysregulation of AT2 cells may lead to the development of acute and chronic lung diseases and cancer. The lack of clinically relevant AT2 cell models hampers our ability to understand pulmonary diseases. Here, we sought to establish reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2) and investigate their potential in forming alveolar organoids to model pulmonary diseases. METHODS: Primary mouse pulmonary alveolar cells (mPACs) were isolated and immortalized with a retroviral expression of SV40 Large T antigen (LTA). Cell proliferation and survival was assessed by crystal violet staining and WST-1 assays. Marker gene expression was assessed by qPCR, Western blotting, and/or immunostaining. Alveolar organoids were generated by using matrigel. Ad-TGF-ß1 was used to transiently express TGF-ß1. Stable silencing ß-catenin or overexpression of mutant KRAS and TP53 was accomplished by using retroviral vectors. Subcutaneous cell implantations were carried out in athymic nude mice. The retrieved tissue masses were subjected to H & E histologic evaluation. RESULTS: We immortalized primary mPACs with SV40 LTA to yield the imPACs that were non-tumorigenic and maintained long-term proliferative activity that was reversible by FLP-mediated removal of SV40 LTA. The EpCAM+ AT2-enriched subpopulation (i.e., imPAC2) was sorted out from the imPACs, and was shown to express AT2 markers and form alveolar organoids. Functionally, silencing ß-catenin decreased the expression of AT2 markers in imPAC2 cells, while TGF-ß1 induced fibrosis-like response by regulating the expression of epithelial-mesenchymal transition markers in the imPAC2 cells. Lastly, concurrent expression of oncogenic KRAS and mutant TP53 rendered the imPAC2 cells a tumor-like phenotype and activated lung cancer-associated pathways. Collectively, our results suggest that the imPAC2 cells may faithfully represent AT2 populations that can be further explored to model pulmonary diseases.