Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211638

RESUMO

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Assuntos
Luteína , Xantofilas , Humanos , Luteína/farmacologia , Luteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Palmíticos , Lipídeos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química
2.
Biotechnol Bioeng ; 121(5): 1596-1608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372661

RESUMO

Mixotrophic cultivation holds great promise to significantly enhance the productivities of biomass and valuable metabolites from microalgae. In this study, a new kinetic model is developed, explicitly describing the effect of the most influential environmental factors on both biomass growth and the production of the high-value product lutein. This extensive study of multinutrient kinetics for Tetradesmus obliquus in a mixotrophic regime covers various nutritional conditions. Crucial nutrients governing the model include nitrate, phosphate, and glucose. Using seven state variables and 13 unknown parameters, the model's accuracy was ensured through a well-designed two-factor, four-level experimental setup, providing ample data for reliable calibration and validation. Results accurately predict dynamic concentration profiles for all validation experiments, revealing broad applicability. Optimizing nitrogen availability led to significant increases in biomass (up to fourfold) and lutein production (up to 12-fold), with observed maximum biomass concentration of 6.80 g L-1 and lutein reaching 25.58 mg L-1. Noticeably, the model exhibits a maximum specific growth rate of 4.03 day-1, surpassing reported values for photoautotrophic and heterotrophic conditions, suggesting synergistic effects. Valuable guidance is provided for applying the method to various microalgal species and results are large-scale production-ready. Future work will exploit these results to develop real-time photobioreactor operation strategies.


Assuntos
Microalgas , Microalgas/metabolismo , Luteína/metabolismo , Biomassa , Fotobiorreatores , Processos Heterotróficos
3.
Pharmacol Res ; : 107421, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293582

RESUMO

Intestinal failure-associated liver disease (IFALD) is a spectrum of liver diseases occurring in patients not exposed to liver-damaging factors other than those linked to intestinal dysfunction. The pathogenesis of this disease is multifactorial. It is estimated that up to 90% of people taking long-term parenteral nutrition may develop IFALD, with particular risk for premature neonates and infants due to their immature antioxidant protection and bile acid metabolism. The lack of effective prevention and treatment methods for IFALD encourages scientists to search for new therapeutic solutions. The use of lutein as a substance with antioxidant and anti-inflammatory effects seems to be of great potential in such indication, especially since patients on parenteral nutrition are at risk of deficits in various plant-based nutrients, including lutein. In this review, we explain the pathogenesis of IFALD and summarize knowledge of the hepatoprotective properties of lutein, underscoring its potential as a treatment option. The hepatoprotective effects of lutein and their proposed mechanisms of action are supported by studies on cells and animals exposed to various liver-damaging factors, such as lipopolysaccharide, high-fat diet, alcohol, and more. Finally, we provide perspectives on the future application of lutein in therapy.

4.
Crit Rev Food Sci Nutr ; : 1-16, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795064

RESUMO

Macular carotenoids, which consist of lutein, zeaxanthin, and meso-zeaxanthin, are dietary antioxidants and macular pigments in the eyes, protecting the macula from light-induced oxidative stress. Lutein is also the main carotenoid in the infant brain and is involved in cognitive development. While a few articles reviewed the role of lutein in early health and development, the current review is the first that focuses on the outcomes of lutein supplementation, either provided to mothers or to infants. Additionally, lutein status and metabolism during pregnancy and lactation, factors that limit the potential application of lutein as a nutritional intervention, and solutions to overcome the limitation are also discussed. In brief, the lutein intake in pregnant and lactating women in the United States may not be optimal. Furthermore, preterm and formula-fed infants are known to have compromised lutein status compared to term and breast-fed infants, respectively. While lutein supplementation via both maternal and infant consumption improves lutein status in infants, the application of lutein as a nutritional intervention may be compromised by its low bioavailability. Various encapsulation techniques have been developed to enhance the delivery of lutein in adult animals or human but should be further evaluated in neonatal models.

5.
Eur J Haematol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164995

RESUMO

Patients with sickle cell disease (SCD) exhibit high levels of reactive oxygen species and low plasma levels of lipophilic antioxidants, which may contribute to end-organ damage and disease sequelae. Apolipoprotein A1, the major apolipoprotein of high-density lipoprotein (HDL), is mainly secreted by the intestine and liver in the form of monomeric ApoA1 (mApoA1) present in plasma. Cholesterol and α-tocopherol are delivered to ApoA1 via the ATP-binding cassette transporter, subfamily A, member 1 (ABCA1). We measured cholesterol, mApoA1, ApoA1, and lipophilic antioxidants in the plasma of 17 patients with SCD and 40 healthy volunteers. Mean HDL cholesterol (-C) levels in SCD patients and healthy subjects were 59.3 and 48.1 mg/dL, respectively, and plasma lutein, zeaxanthin, and α-tocopherol were 64.0%, 68.7%, and 9.1% lower, respectively. To compare SCD to healthy subjects with similar HDL-C, we also performed subgroup analyses of healthy subjects with HDL-C above or below the mean. In SCD, the mApoA1 level was 30.4 µg/mL; 80% lower than 141 µg/mL measured in healthy volunteers with similar HDL-C (56.7 mg/dL). The mApoA1 level was also 38.4% greater in the higher versus lower HDL-C subgroups (p = .002). In the higher HDL-C subgroup, lutein and zeaxanthin transported by HDL were 48.9% (p = .01) and 41.9% (p = .02) higher, respectively, whereas α-tocopherol was 31.7% higher (p = .003), compared to the lower HDL-C subgroup. Plasma mApoA1 may be a marker of the capacity of HDL to capture and deliver liposoluble antioxidants, and treatments which raise HDL may benefit patients with high oxidative stress as exemplified by SCD.

6.
Eur J Pediatr ; 183(6): 2671-2682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509232

RESUMO

To describe the variability in carotenoid content of human milk (HM) in mothers of very to extremely low birth weight preterm infants throughout lactation and to explore the relationship between lutein in HM and the occurrence of retinopathy of prematurity (ROP) in preterm infants. We recruited healthy mothers along with their preterm infants that were born at gestational age 24 + 2 to 29 + 6 weeks or with a birth weight under 1500 g and were exclusively breastfed HM. Each participant provided up to 7 HM samples (2-10 ml) on day 0-3 and once a week until 6 weeks. Additionally, when possible, a blood sample was collected from the infant at week 6. Concentrations of the major carotenoids (lutein, zeaxanthin, beta-carotene, and lycopene) in all HM and blood samples were assessed and compared. Thirty-nine mother-infant dyads were included and 184 HM samples and 21 plasma samples were provided. Mean lutein, zeaxanthin, beta-carotene, and lycopene concentration decreased as lactation progressed, being at their highest in colostrum samples (156.9 vs. 66.9 vs. 363.9 vs. 426.8 ng/ml, respectively). Lycopene (41%) and beta-carotene (36%) were the predominant carotenoids in colostrum and up to 2 weeks post-delivery. Inversely, the proportion of lutein and zeaxanthin increased with lactation duration to account for 45% of the carotenoids in mature HM. Lutein accounted for 58% of the carotenoids in infant plasma and only 28% in HM. Lutein content of transition and mature HM did not differ between mothers of ROP and non-ROP infants.Conclusion Carotenoid content of HM was dynamic and varied between mothers and as lactation progressed. Infant plasma displayed a distinct distribution of carotenoids from HM.


Assuntos
Carotenoides , Leite Humano , Humanos , Leite Humano/química , Feminino , Carotenoides/análise , Carotenoides/sangue , Recém-Nascido , Adulto , Estudos Longitudinais , Retinopatia da Prematuridade/sangue , Recém-Nascido Prematuro , Masculino , Lactação/metabolismo , Colostro/química , Aleitamento Materno , Luteína/análise , Luteína/sangue
7.
Mar Drugs ; 22(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39195445

RESUMO

Carotenoids, with their diverse biological activities and potential pharmaceutical applications, have garnered significant attention as essential nutraceuticals. Microalgae, as natural producers of these bioactive compounds, offer a promising avenue for sustainable and cost-effective carotenoid production. Despite the ability to cultivate microalgae for its high-value carotenoids with health benefits, only astaxanthin and ß-carotene are produced on a commercial scale by Haematococcus pluvialis and Dunaliella salina, respectively. This review explores recent advancements in genetic engineering and cultivation strategies to enhance the production of lutein by microalgae. Techniques such as random mutagenesis, genetic engineering, including CRISPR technology and multi-omics approaches, are discussed in detail for their impact on improving lutein production. Innovative cultivation strategies are compared, highlighting their advantages and challenges. The paper concludes by identifying future research directions, challenges, and proposing strategies for the continued advancement of cost-effective and genetically engineered microalgal carotenoids for pharmaceutical applications.


Assuntos
Engenharia Genética , Luteína , Microalgas , Microalgas/genética , Microalgas/metabolismo , Luteína/biossíntese , Engenharia Genética/métodos , Humanos , Carotenoides , Animais
8.
Mar Drugs ; 22(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057415

RESUMO

Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L-1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L-1, 7.75 g·L-1, and 6.6 g·L-1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein.


Assuntos
Luz , Luteína , Luteína/biossíntese , Clorófitas/genética , Clorófitas/metabolismo , Mutação , Biomassa , Carotenoides/metabolismo
9.
Phytother Res ; 38(3): 1381-1399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217095

RESUMO

Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.


Assuntos
Brassicaceae , Doenças do Sistema Nervoso , Humanos , Verduras/química , Brassicaceae/química , Dieta , Compostos Fitoquímicos
10.
Phytother Res ; 38(6): 3190-3217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634408

RESUMO

Lutein is a naturally occurring carotenoid synthesized by plants and algae that has a beneficial effect on several biological processes and associated ailments. Its immediate application is in ophthalmology, where it significantly lowers the incidences of age-related macular degeneration (AMD). It also has anti-inflammatory action, treatment of diabetic retinopathy, and cataracts, and enhancement of visual contrast. To critically assess lutein biosynthesis, therapeutic applicability, and market research literature. We have discussed its theoretical frameworks, experimental evidence, limitations, as well as clinical trial results, and future research prospects. The literature for this review article was mined and compiled by collecting and analyzing articles from several databases, including ScienceDirect, Google Scholar, PubMed, Wiley Online Library, Patentscope, and ClinicalTrials.gov published until March 30, 2022. Patent publications were identified using the search terms like IC:(C07C67/56) AND EN_AB:(lutein) OR EN_TI:(lutein) OR EN_AB:(extraction) OR EN_TI:(process). According to the literature, lutein is an essential nutrient given that it cannot be synthesized in the human body and acts as an antioxidant, affecting AMD, diabetic retinopathy, Rheumatic diseases, inflammation, and cancer. Due to inadequate production and laborious extraction, lutein is expensive despite its high demand and applicability. Market research predicts a 6.3% compound annual growth rate for lutein by 2032. Optimizing lutein extraction for high yield and purity is necessary. Lutein has proven applicability in various ailments as well as cosmetics that can be developed as a candidate drug for various diseases discussed in the review.


Assuntos
Luteína , Humanos , Luteína/uso terapêutico , Luteína/farmacologia , Degeneração Macular/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
11.
J Assist Reprod Genet ; 41(1): 31-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930517

RESUMO

PURPOSE: To evaluate whether PTX3 is differentially expressed in the granulosa lutein cells derived from women with PCOS and whether BMP6 can regulate the expression of PTX3 in hGL cells. METHODS: The expression levels of BMP6 and PTX3 in granulosa lutein cells were evaluated by RT-qPCR. The correlation between the expression levels of BMP6 /PTX3 and oocyte quality indexes were analyzed using clinical samples. The cells were incubated with BMP6 at different concentrations and times to check the expression of PTX3 in KGN cells. TGF-ß type I inhibitors and small interfering RNA targeting ALK2/3/6,SMAD1/5/8 and SMAD4 were used to study the involvement of SMAD dependent pathways in KGN cells. RESULTS: The levels of BMP6 in hGL cells were negatively correlated with the corresponding oocyte maturation rate and high-quality embryo rate, whereas the levels of PTX3 were positively correlated with the corresponding oocyte maturation rate in PCOS. Additionally, the in vitro cell cultured results showed BMP6 significantly inhibited the expression of PTX3 in KGN cells. Furthermore, using a dual inhibition approach (kinase inhibitors and small interfering RNAs), we identified the ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors and the downstream SMAD1/SMAD5-SMAD4 signaling pathway were responsible for the BMP6-induced cellular activities in KGN cells. CONCLUSIONS: The suppressive effect of BMP6 on PTX3 was mediated by ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors in granulosa cells through the SMAD1/5-SMAD4 dependent signaling pathway in PCOS.Our findings provides new insights into the understanding of the pathogenesis of PCOS-related ovulatory disorders.


Assuntos
Proteína C-Reativa , Células Lúteas , Síndrome do Ovário Policístico , Componente Amiloide P Sérico , Feminino , Humanos , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Proteína Morfogenética Óssea 6/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Regulação para Baixo/genética , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474137

RESUMO

Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.


Assuntos
Luteína , Microalgas , Humanos , Antioxidantes , Biomassa
13.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542125

RESUMO

In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.


Assuntos
Compostos Férricos , Luteína , Extratos Vegetais , Extratos Vegetais/química , Clorofila A , Clorofila , Espectroscopia de Infravermelho com Transformada de Fourier , Acetona , Água , Adsorção , Extração em Fase Sólida/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
14.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542865

RESUMO

Carotenoids are hydrophobic pigments produced exclusively by plants, fungi, and specific microbes. Microalgae are well suited for the production of valuable carotenoids due to their rapid growth, efficient isoprenoid production pathway, and ability to store these compounds within their cells. The possible markets for bio-products range from feed additives in aquaculture and agriculture to pharmaceutical uses. The production of carotenoids in microalgae is affected by several environmental conditions, which can be utilized to enhance productivity. The current study focused on optimizing the extraction parameters (time, temperature, and extraction number) to maximize the yield of carotenoids. Additionally, the impact of various nitrogen sources (ammonia, nitrate, nitrite, and urea) on the production of lutein and loroxanthin in Scenedesmus obliquus was examined. To isolate the carotenoids, 0.20 g of biomass was added to 0.20 g of CaCO3 and 10.0 mL of ethanol solution containing 0.01% (w/v) pyrogallol. Subsequently, the extraction was performed using an ultrasonic bath for a duration of 10 min at a temperature of 30 °C. This was followed by a four-hour saponification process using a 10% methanolic KOH solution. The concentration of lutein and loroxanthin was measured using HPLC-DAD at 446 nm, with a flow rate of 1.0 mL/min using a Waters YMC C30 Carotenoid column (4.6 × 250 mm, 5 µm). The confirmation of carotenoids after their isolation using preparative chromatography was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an atmospheric pressure chemical ionization (APCI) probe and UV-vis spectroscopy. In summary, S. obliquus shows significant promise for the large-scale extraction of lutein and loroxanthin. The findings of this study provide strong support for the application of this technology to other species.


Assuntos
Microalgas , Scenedesmus , Luteína/química , Scenedesmus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carotenoides/química , Microalgas/metabolismo
15.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257270

RESUMO

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis, synaptic plasticity, and cognition. BDNF is a neurotrophin that binds to tropomyosin receptor kinase B (TrkB), a specific receptor on target cell surfaces; it acts on neuronal formation, development, growth, and repair via transcription factors, such as cAMP response element-binding protein (CREB), and it is involved in learning and memory. BDNF expression is decreased in patients with Alzheimer's disease (AD). Exercise and the intake of several different foods or ingredients can increase BDNF expression, as confirmed with lutein, xanthophylls (polar carotenoids), and ethanolamine plasmalogen (PlsEtn), which are present at high levels in the brain. This study examined the effects of combining lutein and PlsEtn using lutein-rich Chlorella and ascidian extracts containing high levels of PlsEtn bearing docosahexaenoic acid, which is abundant in the human brain, on the activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus of Sprague-Dawley rats. Although activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus was not observed in Chlorella or ascidian PlsEtn monotherapy, activation was observed with combination therapy at an equal dose. The results of this study suggest that the combination of Chlorella and ascidian PlsEtn may have a preventive effect against dementia, including AD.


Assuntos
Doença de Alzheimer , Chlorella , Plasmalogênios , Humanos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo , Luteína , Ratos Sprague-Dawley , Transdução de Sinais , Encéfalo , Doença de Alzheimer/tratamento farmacológico
16.
J Sci Food Agric ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268595

RESUMO

BACKGROUND: Encapsulation of bioactive compounds within protein-based nanoparticles has garnered considerable attention in the food and pharmaceutical industries because of its potential to enhance stability and delivery. Soy protein isolate (SPI) has emerged as a promising candidate, prompting the present study aiming to modify its properties through controlled thermal and trypsin treatments for improved encapsulation efficiency (EE) of lutein and its storage stability. RESULTS: The EE of lutein nanoparticles encapsulated using SPI trypsin hydrolysates (SPIT) with three varying degrees of hydrolysis (4.11%, 6.91% and 10.61% for SPIT1, SPIT2 and SPIT3, respectively) increased by 12.00%, 15.78% and 18.59%, respectively, compared to SPI. Additionally, the photostability of SPIT2 showed a remarkable increase of 38.21% compared to SPI. The superior encapsulation efficiency and photostability of SPIT2 was attributed to increased exposure of hydrophobic groups, excellent antioxidant activity and uniform particle stability, despite exhibiting lower binding affinity to lutein compared to SPI. Furthermore, in SPIT2, the protein structure unfolded, with minimal impact on overall secondary structure upon lutein addition. CONCLUSION: The precise application of controlled thermal and trypsin treatments to SPI has been shown to effectively produce protein nanoparticles with substantially improved encapsulation efficiency for lutein and enhanced storage stability of the encapsulated lutein. These findings underscore the potential of controlled thermal and trypsin treatments to modify protein properties effectively and offer significant opportunities for expanding the applications of protein-based formulations across diverse fields. © 2024 Society of Chemical Industry.

17.
Toxicol Mech Methods ; : 1-15, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39252190

RESUMO

Lutein, zeaxanthin, and mesozeaxanthin, collectively termed as macular pigments, are key carotenoids integral to optimized central vision of the eye. Therefore, nutraceuticals and functional foods have been developed commercially using carotenoid rich flowers, such as marigold and calendula or single celled photosynthetic algae, such as the Dunaliella. Industrial formulation of such products enriched in macular pigments have often suffered from serious bottlenecks in stability, delivery, and bioavailability. The two chief factors largely responsible for decreasing the shelf-life have been solubility and oxidation of these pigments owing to their strong lipophilic nature and presence of conjugated double bonds. In this regard, oil-based formulations have often been found to be more suitable than powder-based formulations in terms of shelf life and targeted delivery. In some cases, addition of phenolic acids in the formulations have also augmented the product value by enhancing micellization. In this regard, a novel proprietary formulation of these pigments has been developed in our laboratory utilizing marigold extracts in a colloidal solution of extra virgin olive oil and canola oil fortified with antioxidants like thyme oil, tocopherol, and ascorbyl palmitate. This review article presents an updated insight into the stability and bioavailability of industrially manufactured macular carotenoids together with their safety and solubility issues.

18.
AAPS PharmSciTech ; 25(5): 135, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862657

RESUMO

Lutein (Lut) is a recognized nutritional supplement known for its antioxidative and anti-inflammatory properties, crucial in mitigating ocular disease. However, enhancements to Lut stability and solubility remain challenges to be addressed in the healthcare industry. Herein, we fabricated and evaluated a food-grade highly porous ß-cyclodextrin metal-organic framework (ß-CD-MOF) for its ability to encapsulate Lut. Lut stability considerably improved when loaded into ß-CD-MOF to form a Lut@ß-CD-MOF complex, which exhibited better stability than Lut loaded into the γ-cyclodextrin metal-organic framework (Lut@γ-CD-MOF), Lut@ß-CD, and commercial product (Blackmores™) at 40°C, 60°C, and 70°C, respectively. The solubility of Lut@ß-CD-MOF in water increased by 26.8-fold compared to raw Lut at 37°C. Lut@ß-CD-MOF exhibited greater hydrophilicity, as determined by measuring the water contact angle. Molecular docking and other characterizations of Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that Lut was successfully encapsulated in the chamber formed by the three cyclodextrins in ß-CD-MOF. Thermogravimetric analysis and Raman spectroscopy demonstrated that Lut distributed in the ß-CD-MOF cavity deeply improved Lut stability and solubility. In conclusion, our findings underscored the function of ß-CD-MOF in enhancing Lut stability and solubility for formulation applications.


Assuntos
Luteína , Estruturas Metalorgânicas , Solubilidade , beta-Ciclodextrinas , Estruturas Metalorgânicas/química , beta-Ciclodextrinas/química , Luteína/química , Estabilidade de Medicamentos , Difração de Raios X/métodos , Simulação de Acoplamento Molecular/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Interações Hidrofóbicas e Hidrofílicas , Porosidade
19.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722384

RESUMO

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Assuntos
Luteína , Xantofilas , Zeaxantinas , Luteína/biossíntese , Luteína/metabolismo , Zeaxantinas/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica/métodos , Carotenoides/metabolismo , Bactérias/metabolismo , Humanos , Vias Biossintéticas
20.
J Food Sci Technol ; 61(10): 2008-2019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39285990

RESUMO

In this study, lutein and lycopene were encapsulated in plant protein (faba bean protein concentrate, (FPC))-carrageenan (Car) conjugates prepared by Maillard reaction in an aqueous media. The conjugation improved encapsulation yield that reached to 82.69% and 93.07%, for lycopene and lutein, respectively. The mean particle diameters for lutein loaded nanoparticles observed smaller in FPC-Car conjugates (66.60 nm) than FPC (71.49 nm). Scanning electron microscopy images showed that FPC-Car conjugates were more spherical and no fractures or fissures on the surface, revealing that wall materials provided better protection and retention for core materials. The diameter of lycopene nanoparticles coated with FPC remained constant between pH 3-4 and 7-9 but increased to 220 nm at pH 4-6. Even though the diameter of lutein nanoparticles coated with FPC remains steady between pH 5 and 9, increased to 953 nm at pH 3. The bioaccessibility of the lutein or lycopene samples encapsulated by FPC were found as higher than FPC-Car conjugates. These findings suggest that protein-polysaccharide conjugates could be used as a wall material to encapsulate lipophilic lutein and lycopene in order to improve their stability, property and bioaccessibility. As a result, FPC-Car conjugates may be an alternative for the formation of functional beverages as well as other nutraceutical products. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05976-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA