Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 179: 156622, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648681

RESUMO

Tuberculosis is caused by Mycobacterium tuberculosis (M tb), which is recognized by macrophages and produces inflammatory cytokines, and chemokines at the site of infection. The present study was proposed to understand the interaction of M tb antigens, cytokines, and chemokines. We have evaluated the chemokine MCP-1 levels and its expression in PBMCs stimulated with M tb antigens Ag85A, ESAT6 and recombinant cytokines rhTNF-α, rhIFN-γ, rhTGF-ß, and rhIL-10 in active pulmonary TB (APTB) patients, household contacts (HHC) at 0 months, 6 months and healthy controls (HC). We have observed low levels of MCP-1 with Ag85A, ESAT6, and rhTNF-α stimulations in APTB 0M compared to HHC and HC (p < 0.0067, p < 0.0001, p < 0.01, p < 0.005, p < 0.0065, p < 0.0001) and significantly increased after treatment with rhTNF-α. The MCP-1 levels with rhIFN-γ were high in APTB, HHC at 0 M and significant between APTB 0 M vs. 6 M, HHC vs. HC, and HHC 0M vs. 6M (p < 0.0352, p < 0.0252, p < 0.00062). The rhTGF-ß, rhIL-10 induced high MCP-1 levels in APTB, HHC compared to HC (p < 0.0414, p < 0.0312, p < 0.004, p < 0.0001) and significantly decreased after treatment with rhIL-10 (p < 0.0001). The MCP-1 expression was low with all the stimulations in APTB 0M when compared to HC and after treatment. Whereas, HHC shown low MCP-1 expression with rhTNF-α, rhIFN-γ and Ag85A and high with rhTGF-ß, rhIL-10 and ESAT6. In conclusion, the study determined the differential expression and production of MCP-1 with M tb antigens and recombinant cytokines. Further, cohort studies are required to study these interaction to identify the high risk individuals, which might help for TB control.


Assuntos
Antígenos de Bactérias , Quimiocina CCL2 , Citocinas , Mycobacterium tuberculosis , Proteínas Recombinantes , Humanos , Antígenos de Bactérias/imunologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Masculino , Mycobacterium tuberculosis/imunologia , Feminino , Proteínas Recombinantes/imunologia , Adulto , Citocinas/metabolismo , Proteínas de Bactérias/imunologia , Pessoa de Meia-Idade , Interferon gama/imunologia , Interferon gama/metabolismo , Tuberculose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Tuberculose/imunologia , Fator de Crescimento Transformador beta/imunologia
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39003248

RESUMO

Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/genética , Humanos , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Genoma Bacteriano , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno
3.
Cell Mol Life Sci ; 79(1): 62, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001155

RESUMO

Availability of iron is a key factor in the survival and multiplication of Mycobacterium tuberculosis (M.tb) within host macrophage phagosomes. Despite host cell iron regulatory machineries attempts to deny supply of this essential micronutrient, intraphagosomal M.tb continues to access extracellular iron. In the current study, we report that intracellular M.tb exploits mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) for the delivery of host iron carrier proteins lactoferrin (Lf) and transferrin (Tf). Studying the trafficking of iron carriers in infected cells we observed that sGAPDH along with the iron carrier proteins are preferentially internalized into infected cells and trafficked to M.tb containing phagosomes where they are internalized by resident mycobacteria resulting in iron delivery. Collectively our findings provide a new mechanism of iron acquisition by M.tb involving the hijack of host sGAPDH. This may contribute to its successful pathogenesis and provide an option for targeted therapeutic intervention.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Ferro/metabolismo , Lactoferrina/metabolismo , Mycobacterium tuberculosis/metabolismo , Transferrina/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Humanos , Células L , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Células THP-1 , Tuberculose/patologia
4.
BMC Infect Dis ; 22(1): 312, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354436

RESUMO

OBJECTIVES: Kashgar prefecture is an important transportation and trade hub with a high incidence of tuberculosis. The following study analyzed the composition and differences in Mycobacterium tuberculosis (M.tb) lineage and specific tags to distinguish the lineage of the M.tb in Kashgar prefecture, thus providing a basis for the classification and diagnosis of tuberculosis in this area. METHODS: Whole-genome sequencing (WGS) of 161 M.tb clinical strains was performed. The phylogenetic tree was constructed using Maximum Likelihood (ML) based on single nucleotide polymorphisms (SNPs) and verified through principal component analysis (PCA). The composition structure of M.tb in different regions was analyzed by combining geographic information. RESULTS: M.tb clinical strains were composed of lineage 2 (73/161, 45.34%), lineage 3 (52/161, 32.30%) and lineage 4 (36/161, 22.36%). Moreover, the 3 lineages were subdivided into 11 sublineages, among which lineage 2 included lineage 2.2.2/Asia Ancestral 1 (9/73, 12.33%), lineage 2.2.1-Asia Ancestral 2 (9/73, 12.33%), lineage 2.2.1-Asia Ancestral 3 (18/73, 24.66%), and lineage 2.2.1-Modern Beijing (39/73, 53.42%). Lineage 3 included lineage 3.2 (14/52, 26.92%) and lineage 3.3 (38/52, 73.08%), while lineage 4 included lineage 4.1 (3/36, 8.33%), lineage 4.2 (2/36, 5.66%), lineage 4.4.2 (1/36, 2.78%), lineage 4.5 (28/36, 77.78%) and lineage 4.8 (2/36, 5.66%), all of which were consistent with the PCA results. One hundred thirty-six markers were proposed for discriminating known circulating strains. Reconstruction of a phylogenetic tree using the 136 SNPs resulted in a tree with the same number of delineated clades. Based on geographical location analysis, the composition of Lineage 2 in Kashgar prefecture (45.34%) was lower compared to other regions in China (54.35%-90.27%), while the composition of Lineage 3 (32.30%) was much higher than in other regions of China (0.92%-2.01%), but lower compared to the bordering Pakistan (70.40%). CONCLUSION: Three lineages were identified in M.tb clinical strains from Kashgar prefecture, with 136 branch-specific SNP. Kashgar borders with countries that have a high incidence of tuberculosis, such as Pakistan and India, which results in a large difference between the M.tb lineage and sublineage distribution in this region and other provinces of China.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Genótipo , Humanos , Mycobacterium tuberculosis/genética , Paquistão , Filogenia
5.
Mol Divers ; 26(3): 1675-1695, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34468898

RESUMO

Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDSTB- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 × 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 µM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Reposicionamento de Medicamentos , Humanos , Polifarmacologia , Tuberculose/tratamento farmacológico
6.
Biologicals ; 72: 54-57, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247914

RESUMO

Tuberculosis (TB) is one of the top 10 causes of death in humans worldwide. The most important causative agents of TB are bacteria from the Mycobacterium tuberculosis complex (MTC), although nontuberculous mycobacteria (NTM) can also cause similar infections. The ability to identify and differentiate MTC isolates from NTM is important for the selection of the correct antimicrobial therapy. Immunochromatographic assays with antibodies anti-MPT64 allow differentiation between MTC and NTM since the MPT64 protein is specific from MTC. However, studies reported false-negative results mainly due to mpt64 63-bp deletion. Considering this drawback, we selected seven human antibody fragments against MPT64 by phage display and produced them as scFv-Fc. Three antibodies reacted with rMPT64 mutant (63-bp deletion) protein and native MPT64 from M. tuberculosis H37Rv in ELISA and Western blot. These antibodies are new biological tools with the potential for the development of TB diagnosis helping to overcome limitations of the MPT64-based immunochromatographic tests currently available.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Técnicas de Visualização da Superfície Celular , Tuberculose , Bacteriófagos , Ensaio de Imunoadsorção Enzimática , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico
7.
FASEB J ; 33(11): 12554-12564, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451010

RESUMO

Mycobacterium tuberculosis (M.tb) infection in lung causes pulmonary fibrosis, which leads to the irreversible reduction of pulmonary function. Fibrotic protein connective tissue growth factor (CTGF) expression has been confirmed to play a crucial role in lung fibrosis. However, the underlying signal pathway and effect of M.tb on CTGF expression in human lung fibroblasts are unclear. Our results revaled that M.tb caused time- and concentration-dependent increases in CTGF expression in human lung fibroblasts. A mechanistic investigation revealed that M.tb induced CTGF expression through TLR2 but not TLR4. The promoter activity assay indicated that M.tb-induced CTGF activity was mainly controlled by the promoter region at -747 to -184 bp, which contained signal transducer and activator of transcription 3 and activator protein 1 (AP-1) binding sites. Moreover, curcumin (AP-1 inhibitor) restrained M.tb-induced CTGF expression. M.tb also induced increases in AP-1 luciferase activity and DNA binding activity of c-Jun and c-Fos on the CTGF promoter. Furthermore, the knockdown of c-Jun by small interfering RNA attenuated M.tb-induced CTGF expression and AP-1 luciferase activity. A JNK inhibitor (SP600125) and a JNK dominant-negative mutant suppressed M.tb-induced CTGF expression. We also discovered that M.tb could induce the phosphorylation of JNK and c-Jun. Furthermore, SP600125 inhibited M.tb-induced c-Jun phosphorylation and AP-1- luciferase activity. M.tb-induced fibronectin expression was inhibited by anti-CTGF antibody. These results demonstrate that M.tb is activated through TLR2 to induce JNK activation, further increasing the DNA binding activity of c-Jun and c-Fos and finally inducing CTGF expression and extracellular matrix production.-Lee, H.-S., Hua, H.-S., Wang, C.-H., Yu, M.-C., Chen, B.-C., Lin, C.-H. Mycobacterium tuberculosis induces connective tissue growth factor expression through the TLR2-JNK-AP-1 pathway in human lung fibroblasts.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fibroblastos/metabolismo , Pulmão/metabolismo , MAP Quinase Quinase 4/metabolismo , Mycobacterium tuberculosis/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Tuberculose Pulmonar/metabolismo , Antracenos/farmacologia , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , Elementos de Resposta , Tuberculose Pulmonar/patologia
8.
Bioorg Med Chem ; 28(1): 115213, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810890

RESUMO

Analogues of the anti-tuberculosis drug bedaquiline, bearing a 3,5-dimethoxy-4-pyridyl C-unit, retain high anti-bacterial potency yet exert less inhibition of the hERG potassium channel, in vitro, than the parent compound. Two of these analogues (TBAJ-587 and TBAJ-876) are now in preclinical development. The present study further explores structure-activity relationships across a range of related 3,5-disubstituted-4-pyridyl C-unit bedaquiline analogues of greatly varying lipophilicity (clogP from 8.16 to 1.89). This broader class shows similar properties to the 3,5-dimethoxy-4-pyridyl series, being substantially more potent in vitro and equally active in an in vivo (mouse) model than bedaquiline, while retaining a lower cardiovascular risk profile through greatly attenuated hERG inhibition.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/síntese química , Antituberculosos/química , Diarilquinolinas/síntese química , Diarilquinolinas/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
9.
J Cell Mol Med ; 23(8): 5642-5653, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199066

RESUMO

This study aimed to examine miR-140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR-140 in host-bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR-140 expression and relevant mRNA expression were detected by quantitative real-time PCR (qRT-PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR-140 and the 3' untranslated region (UTR) of tumour necrosis factor receptor-associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR-140 was up-regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP-1 and U937 cells with M tb infection. Overexpression of miR-140 promoted M tb survival; on the other hand, miR-140 knockdown attenuated M tb survival. The pro-inflammatory cytokines including interleukin 6, tumour necrosis-α, interleukin-1ß and interferon-γ were enhanced by M tb infection in THP-1 and U937 cells. MiR-140 overexpression reduced these pro-inflammatory cytokines levels in THP-1 and U937 cells with M tb infection; while knockdown of miR-140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR-140 and was negatively modulated by miR-140. TRAF6 overexpression increased the pro-inflammatory cytokines levels and partially restored the suppressive effects of miR-140 overexpression on pro-inflammatory cytokines levels in THP-1 and U937 cells with M tb infection. In conclusion, our results implied that miR-140 promoted M tb survival and reduced the pro-inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.


Assuntos
Inflamação/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , MicroRNAs/genética , Viabilidade Microbiana , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Células U937 , Regulação para Cima
10.
Bioorg Med Chem ; 27(7): 1292-1307, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30803745

RESUMO

Bedaquiline is a new drug of the diarylquinoline class that has proven to be clinically effective against drug-resistant tuberculosis, but has a cardiac liability (prolongation of the QT interval) due to its potent inhibition of the cardiac potassium channel protein hERG. Bedaquiline is highly lipophilic and has an extremely long terminal half-life, so has the potential for more-than-desired accumulation in tissues during the relatively long treatment durations required to cure TB. The present work is part of a program that seeks to identify a diarylquinoline that is as potent as bedaquiline against Mycobacterium tuberculosis, with lower lipophilicity, higher clearance, and lower risk for QT prolongation. Previous work led to the identification of compounds with greatly-reduced lipophilicity compounds that retain good anti-tubercular activity in vitro and in mouse models of TB, but has not addressed the hERG blockade. We now present compounds where the C-unit naphthalene is replaced by a 3,5-dialkoxy-4-pyridyl, demonstrate more potent in vitro and in vivo anti-tubercular activity, with greatly attenuated hERG blockade. Two examples of this series are in preclinical development.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Diarilquinolinas/síntese química , Diarilquinolinas/química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
11.
BMC Infect Dis ; 18(1): 133, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548281

RESUMO

BACKGROUND: Precise designation of high risk forms of latent Mycobacterium tuberculosis-M.tb infections (LTBI) is impossible. Delineation of high-risk LTBI can, however, allow for chemoprophylaxis and curtail majority cases of active tuberculosis (ATB). There is epidemiological evidence to support the view that LTBI in context of HIV-1 co-infection is high-risk for progression to ATB relative to LTBI among HIV-ve persons. We recently showed that assays of M.tb thymidylate kinase (TMKmt) antigen and host specific IgG can differentiate ATB from LTBI and or no TB (NTB, or healthy controls). In this study, we aimed to expose the differential levels of TMKmt Ag among HIV+ve co-infected LTBI relative to HIV-ve LTBI as a strategy to advance these assays for designating incipient LTBI. METHODS: TMKmt host specific IgM and IgG detection Enzyme Immuno-Assays (EIA) were conducted on 40 TB exposed house-hold contacts (22 LTBI vs. 18 no TB (NTB) by QunatiFERON-TB GOLD®); and TMKmt Ag detection EIA done on 82 LTBI (46 HIV+ve vs 36 HIV-ve) and 9 NTB (American donors). Purified recombinant TMKmt protein was used as positive control for the Ag assays. RESULTS: IgM levels were found to be equally low across QuantiFERON-TB GOLD® prequalified NTB and TB exposed house-hold contacts. Higher TMKmt host specific IgG trends were found among TB house-hold contacts relative to NTB controls. TMKmt Ag levels among HIV+ve LTBI were 0.2676 ± 0.0197 (95% CI: 0.2279 to 0.3073) relative to 0.1069 ± 0.01628 (95% CI: 0.07385 to 0.14) for HIV-ve LTBI (supporting incipient nature of LTBI in context of HIV-1 co-infection). NTB had TMKmt Ag levels of 0.1013 ± 0.02505 (5% CI: 0.0421 to 0.1606) (intimating that some were indeed LTBI). CONCLUSIONS: TMKmt Ag levels represent a novel surrogate biomarker for high-risk LTBI, while host-specific IgG can be used to designate NTB from LTBI.


Assuntos
Progressão da Doença , Tuberculose Latente/diagnóstico , Mycobacterium tuberculosis/enzimologia , Núcleosídeo-Fosfato Quinase/metabolismo , Teste Tuberculínico/métodos , Adulto , Anticorpos Antibacterianos/análise , Biomarcadores/análise , Coinfecção , Feminino , Infecções por HIV/complicações , HIV-1 , Humanos , Imunoglobulina G/análise , Imunoglobulina M/análise , Tuberculose Latente/complicações , Tuberculose Latente/microbiologia , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Medição de Risco
12.
Exp Cell Res ; 352(2): 313-321, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215633

RESUMO

Macrophages play a pivotal role in host immune response against mycobacterial infection, which is tightly modulated by multiple factors, including microRNAs. The purpose of the present study was to investigate the biological function and potential mechanism of miR-32-5p in human macrophages during Mycobacterium tuberculosis (M.tb) infection. The results demonstrated that miR-32-5p was robustly enhanced in THP-1 and U937 cells in response to M.tb infection. TLR-4 signaling was required for upregulation of miR-32-5p induced by M.tb infection. Additionally, the introduction of miR-32-5p strongly increased the survival rate of intracellular mycobacteria, whereas inhibition of miR-32-5p suppressed intracellular growth of mycobacteria during M.tb challenged. Furthermore, forced expression of miR-32-5p dramatically attenuated the accumulation of inflammatory cytokines IL-1ß, IL-6 and TNF-α induced by M.tb infection. Conversely, downregulated expression of miR-32-5p led to enhancement in these inflammatory cytokines. More importantly, our study explored that Follistatin-like protein 1 (FSTL1) was a direct and functional target of miR-32-5p. qRT-PCR and western blot analysis further validated that miR-32-5p negatively regulated the expression of FSTL1. Mechanistically, re-expression of FSTL1 attenuated the ability of miR-32-5p to promote mycobacterial survival. Meanwhile, miR-32-5p-mediated inhibition of the inflammatory cytokine production were completely reversed by overexpression of FSTL1. Collectively, our findings demonstrated a novel role of TLR-4/miRNA-32-5p/FSTL1 in the modulation of host defense against mycobacterial infection, which may provide a better understanding of the pathogenesis of tuberculosis and useful information for developing potential therapeutic interventions against the disease.


Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , Macrófagos/imunologia , MicroRNAs/genética , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Relacionadas à Folistatina/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/microbiologia , MicroRNAs/metabolismo , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Exp Cell Res ; 354(2): 71-77, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28327409

RESUMO

Autophagy plays a pivotal role in activating the antimicrobial host defense against Mycobacterium tuberculosis (M.tb.). The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the influence of miR-23a-5p on the activation of macrophage autophagy during M.tb. infection in bone marrow-derived macrophages (BMDMs) and murine RAW264.7 cells. Here, we demonstrated that M.tb.-infection of macrophages lead to markedly enhanced expression of miR-23a-5p in a time- and dose-dependent manner. Furthermore, forced expression of miR-23a-5p accelerated the survival rate of intracellular mycobacteria, while transfection with miR-23a-5p inhibitors attenuated mycobacterial survival. More importantly, overexpression of miR-23a-5p dramatically prevented M.tb.-induced activation of autophagy in macrophages, whereas inhibitors of miR-23a-5p remarkably accelerated M.tb.-induced autophagy. Mechanistically, miR-23a-5p is able to modulate TLR2/MyD88/NF-κB signaling activity by targeting TLR2 in RAW264.7 cells in response to M.tb.-infection. Collectively, these findings demonstrated that miR-23a-5p modulated the innate host defense by promoting mycobacteria survival and inhibiting the activation of autophagy against M.tb. through TLR2/MyD88/NF-κB pathway by targeting TLR2, which may provide a promising therapeutic target for tuberculosis.


Assuntos
Autofagia/genética , MicroRNAs/metabolismo , Viabilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Regulação da Expressão Gênica , Espaço Intracelular/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , MicroRNAs/genética , Ligação Proteica/genética , Células RAW 264.7 , Transdução de Sinais , Receptor 2 Toll-Like/genética , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
14.
Int J Med Microbiol ; 304(5-6): 742-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24951307

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a leading infectious disease taking one human life every 15s globally. Mycobacterium undergoes reductive evolution; the ancestors have bigger genome size and rich in metabolic pathways. Mycobacterium indicus pranii (MIP) is placed much above Mycobacterium tuberculosis (M.tb) in evolutionary scale and is a non-pathogenic, saprophytic mycobacterium. Our in silico comparative proteomic analyses of virulence factors of M.tb and their homologs in 12 different Mycobacterial species, including MIP, point toward gene cooption as an important mechanism in evolution of mycobacteria. We propose that adaptive changes in niche factors of non-pathogenic mycobacterium, together with novel gene acquisitions, are key players in the evolution of pathogenicity. Antigenic analyses between M.tb and MIP highlighted the importance of PE/PPE family in host immunomodulation, further supporting the likely potential of MIP as an effective vaccine against TB.


Assuntos
Proteínas de Bactérias/análise , Evolução Biológica , Mycobacterium/química , Proteoma/análise , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Humanos , Mycobacterium/genética , Proteoma/genética , Fatores de Virulência/genética
15.
Microbes Infect ; 26(3): 105284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38145750

RESUMO

The increasing prevalence of drug-resistant Tuberculosis (TB) is imposing extreme difficulties in controlling the TB infection rate globally, making treatment critically challenging. To combat the prevailing situation, it is crucial to explore new anti-TB drugs with a novel mechanism of action and high efficacy. The Mycobacterium tuberculosis (M.tb)DciA is an essential protein involved in bacterial replication and regulates its growth. DciA interacts with DNA and provides critical help in binding other replication machinery proteins to the DNA. Moreover, the lack of any structural homology of M.tb DciA with human proteins makes it an appropriate target for drug development. In this study, FDA-approved drugs were virtually screened against M.tb DciA to identify potential inhibitors. Four drugs namely Lanreotide, Risedronate, Triflusal, and Zoledronic acid showed higher molecular docking scores. Further, molecular dynamics simulations analysis of DciA-drugs complexes reported stable interaction, more compactness, and reduced atomic motion. The anti-TB activity of drugs was further evaluated under in vitro and ex vivo conditions where Triflusal was observed to have the best possible activity with the MIC of 25 µg/ml. Our findings present novel DciA inhibitors and anti-TB activity of Triflusal. Further investigations on the use of Triflusal may lead to the discovery of a new anti-TB drug.


Assuntos
Mycobacterium tuberculosis , Salicilatos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Simulação de Acoplamento Molecular , Tuberculose/microbiologia , DNA/uso terapêutico
16.
Mol Inform ; 43(3): e202300284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123523

RESUMO

Tuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies. New therapeutics with novel mechanisms of action are urgently required to address the current global TB crisis. The essential mycobacterial primase DnaG with no structural homology to homo sapiens presents itself as a good candidate for drug targeting. In the present study, Mitoxantrone and Vapreotide, two FDA-approved drugs, were identified as potential anti-mycobacterial agents. Both Mitoxantrone and Vapreotide exhibit a strong Minimum Inhibitory Concentration (MIC) of ≤25µg/ml against both the virulent (M.tb-H37Rv) and avirulent (M.tb-H37Ra) strains of M.tb. Extending the validations further revealed the inhibitory potential drugs in ex vivo conditions. Leveraging the computational high-throughput multi-level docking procedures from the pool of ~2700 FDA-approved compounds, Mitoxantrone and Vapreotide were screened out as potential inhibitors of DnaG. Extensive 200 ns long all-atoms molecular dynamic simulation of DnaGDrugs complexes revealed that both drugs bind strongly and stabilize the DnaG during simulations. Reduced solvent exposure and confined motions of the active centre of DnaG upon complexation with drugs indicated that both drugs led to the closure of the active site of DnaG. From this study's findings, we propose Mitoxantrone and Vapreotide as potential anti-mycobacterial agents, with their novel mechanism of action against mycobacterial DnaG.


Assuntos
Mycobacterium tuberculosis , Somatostatina/análogos & derivados , Humanos , Antituberculosos/farmacologia , DNA Primase/química , DNA Primase/metabolismo , Mitoxantrona/farmacologia
17.
Discov Med ; 36(182): 437-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531785

RESUMO

This research project delves into the multifaceted dynamics of Mycobacterium tuberculosis (M.tb) endocarditis, a significant yet uncommon manifestation of tuberculosis (TB). Beginning with an overview of M.tb and the global challenges posed by TB, we navigate through the bacterium's evolution, transmission modes, and the intricate host immune response. The pathology and pathophysiology of M.tb endocarditis are explored, emphasizing its complexities and the host's efforts to contain the pathogen. The study extends to atypical mycobacterial endocarditis, highlighting the emergence of species like M.chimaera, M.fortuitum, and M.chelonae, with a focus on their association with life-threatening mycobacterial endocarditis. Clinical presentations and complications of M.tb endocarditis are detailed, addressing challenges in diagnosis, drug-resistant, co-infections with Human Immunodeficiency Virus (HIV), and potential sepsis. The research underscores the need for a deeper understanding of M.tb endocarditis to enhance prevention, diagnosis, and treatment strategies. Examining the genetic and environmental factors influencing M.tb endocarditis, the study discusses the interplay of immune-related genes, environmental conditions, and predispositions contributing to infection susceptibility. Despite challenges in treatment due to its rarity, the research highlights current protocols, surgical interventions, and promising pharmaceutical developments. Lastly, unraveling these intricate factors is crucial for refining strategies and conducting large-scale trials to address this global health threat effectively.


Assuntos
Endocardite , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/prevenção & controle
18.
Microbes Infect ; 26(4): 105332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537770

RESUMO

BACKGROUND: Little knowledge of antigen existence in the pulmonary tuberculosis (PTB) patient serum impeded its development in antigen detection technology, despite its considerable potential. METHODS: Human ligand proteins and their adsorbent Mycobacterium tuberculosis (M.tb) proteins in the serum of PTB patients were identified using human protein chip (HuProt™) and LC-MS/MS, successively. The monoclonal antibody of ligand proteins, C5orf24, and polyclonal antibody of 9 M.tb proteins were prepared on mice and rabbits which were used to develop a novel enzyme-linked ligand-sorbent assay (ELLSA). The 412 volunteers were divided into the PTB group (n = 250) and the healthy control (n = 162). The PTB group was further divided into ATB (n = 131), LTBI (n = 18), Clinical diagnosis (n = 18), and Suspected (n = 73). All samples were tested by ELLSA to evaluate the diagnostic performance of ELLSA in PTB patients. RESULTS: Nine ligand proteins specific to PTB patients were identified on chips, with Chromosome 5 Open Reading Frame 24 (C5orf24) and kinocilin (KNCN) showing significantly higher signals. Proteomic analysis of the C5orf24-and KNCN-adsorbent protein complexes revealed 10 and 10 of the M.tb proteins, respectively. According to the composition reference of standard, the ELLSA based on C5orf24 ligand demonstrated a higher sensitivity of 69.6% and specificity of 90.18% in ATB patients and had a sensitivity of 64.22% in bacterial negative pulmonary tuberculosis, whereas the sensitivity of MGIT 960 and Xpert M.tb/RIF were 0%, respectively. CONCLUSIONS: M.tb proteins in serum can be enriched by ligand proteins and detected by ELLSA which proved to have excellent diagnostic performance for PTB.


Assuntos
Antígenos de Bactérias , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/sangue , Humanos , Estudos Retrospectivos , Mycobacterium tuberculosis/imunologia , Feminino , Adulto , Estudos Transversais , Animais , Pessoa de Meia-Idade , Antígenos de Bactérias/imunologia , Masculino , Coelhos , Camundongos , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Ligantes , Adulto Jovem , Proteômica/métodos , Idoso , Espectrometria de Massas em Tandem , Cromatografia Líquida
19.
J Clin Tuberc Other Mycobact Dis ; 36: 100458, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38983441

RESUMO

The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.

20.
Sci Rep ; 14(1): 17006, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043745

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis (M. tb) is a major public health problem with high morbidity and mortality worldwide. In our previous study, we found that a fermentation product of Streptomyces flavofungini TRM90047 exhibited anti-M. tb activity and decreased the expression level of several genes, including rpsL, Rplc and ClpC1. Guided by heteronuclear single quantum correlation-total correlation spectroscopy (HSQC-TOCSY) fingerprints and genome mining, we isolated two new 44-membered macrolides, desertomycin 44-1 (1) and desertomycin 44-2 (2), together with known desertomycin A (3) from S. flavofungini TRM90047. Three desertomycins showed anti-M. tb activity. The EC50 values of desertomycin A, desertomycin 44-1 and desertomycin 44-2 were 25 µg/mL, 25 µg/mL and 50 µg/mL, respectively. Molecular docking analyses revealed that the isolated desertomycins bound well to the RPSL, RPLC and CLPC1 proteins. In the present study, we describe the discovery of new anti-M. tb compounds guided by genome mining, HSQC-TOCSY and anti-M. tb bioassays.


Assuntos
Antituberculosos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Macrolídeos/farmacologia , Macrolídeos/química , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA