RESUMO
Ectophosphatases catalyse the hydrolysis of phosphorylated molecules, such as phospho-amino acids, in the extracellular environment. Nevertheless, the hydrolysis of nucleotides in the extracellular environment is typically catalysed by ectonucleotidases. Studies have shown that acid ectophosphatase, or transmembrane-prostatic acid phosphatase (TM-PAP), a membrane-bound splice variant of prostatic acid phosphatase, has ecto-5'-nucleotidase activity. Furthermore, it was demonstrated that ectophosphatase cannot hydrolyse ATP, ADP, or AMP in triple-negative breast cancer cells. In contrast to previous findings in MDA-MB-231 cells, the ectophosphatase studied in the present work displayed a remarkable capacity to hydrolyse AMP in luminal A breast cancer cells (MCF-7). We showed that AMP dose-dependently inhibited p-nitrophenylphosphate (p-NPP) hydrolysis. The p-NPP and AMP hydrolysis showed similar biochemical behaviours, such as increased hydrolysis under acidic conditions and comparable inhibition by NiCl2, ammonium molybdate, and sodium orthovanadate. In addition, this ectophosphatase with ectonucleotidase activity was essential for the release of adenosine and inorganic phosphate from phosphorylated molecules available in the extracellular microenvironment. This is the first study to show that prostatic acid phosphatase on the membrane surface of breast cancer cells (MCF-7) is correlated with cell adhesion and migration.
Assuntos
Fosfatase Ácida , Neoplasias da Mama , Humanos , Células MCF-7 , Feminino , Hidrólise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/enzimologia , Fosfatase Ácida/metabolismo , 5'-Nucleotidase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Nitrofenóis/farmacologia , Nitrofenóis/metabolismo , Linhagem Celular Tumoral , Compostos OrganofosforadosRESUMO
BACKGROUND: There is increasing evidence that honey has anti-inflammatory, antioxidant, and anti-cancer effects. This study aims to assess and contrast the cytotoxic, anti-metastatic, and apoptotic effects of Ziziphus jujube honey and commercial honey on MCF7 cells. METHODS AND RESULTS: Two honey samples, Ziziphus jujube (JH) and commercial honey (CH), were categorized into high and low groups based on their phenolic content, antioxidant capacity, and diastase activity (PAD score). The viability and migration ability of MCF-7 cells treated with JH and CH were evaluated. Also, quantitative polymerase chain reaction (Q-PCR) was performed to assess the effect of the two honey samples on the expression of Bax, p53, p21 and Bcl-2 genes. JH had a total phenolic content of 606.4 ± 0.1 µg gallic acid equivalent/mg, while CH had a value of 112.1 ± 0.09 µg gallic acid equivalent/mg. The total antioxidant capacity of the two samples was compared. It was 203.5 ± 10.5µM/l in JH and 4.6 ± 10.5 µM/l in CH. In addition, JH had a diastatic activity of 524.1 ± 0.25 U/l, while CH had a value of 209.7 ± 0.56 U/l. According to the results, JH had a high PAD value, while CH had a low PAD value. Cell viability was measured using the results of the MTT assay. The results showed that JH inhibited the growth of MCF-7 cells more strongly (IC50 of 170 ± 4.2 µg/ml) than CH (IC50 of 385.3 ± 4.5 µg/l). The scratch assay showed that treatment with JH decreased the migration rate of MCF-7 cells in a dose-dependent manner compared to the CH and control groups. In addition, the results of q-PCR analysis showed significant upregulation of Bax, p53 and p21 genes and downregulation of Bcl-2 gene in the JH-treated group compared to the CH and control groups. CONCLUSION: These results showed that honey with an increased content of phenolic compounds, antioxidant capacity, and diastatic activity has anticancer properties by effectively suppressing tumor development. This suppression occurs via several mechanisms, including suppression of proliferation and metastasis, and promotion of apoptosis.
Assuntos
Neoplasias da Mama , Mel , Ziziphus , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Antioxidantes/farmacologia , Proteína X Associada a bcl-2/genética , Mel/análise , Proteína Supressora de Tumor p53/genética , Fenóis/farmacologia , Fenóis/análise , Ácido GálicoRESUMO
BACKGROUND: Our previous study investigated the levels of soluble growth factors in the conditioned media of bone marrow-derived mesenchymal stem cells (BMSCs) pre-treated with thiazolidinedione solutions. The present study aimed to investigate the complex intracellular proteins extracted from BMSCs pre-treated with pioglitazone and/or rosiglitazone using proteomics. METHODS: The proliferative effect of the identified protein on MCF-7 cells that interacted non-adhesively with BMSCs pre-treated with pioglitazone and/or rosiglitazone was evaluated using cell culture inserts and conditioned media. The mRNA expression of proliferation and lipid accumulation markers was also evaluated in the interacted MCF-7 cells by reverse transcription-quantitative PCR. Finally, the correlation between the identified protein and fibroblast growth factor 4 (FGF-4) protein in the conditioned media of the pre-treated BMSCs was evaluated by ELISA. RESULTS: The present study identified vimentin as the specific protein among the complex intracellular proteins that likely plays a role in MCF-7 cell proliferation when the breast cancer cells interacted non-adhesively with BMSCs pre-treated with a combination of pioglitazone and rosiglitazone. The inhibition of this protein promoted the proliferation of MCF-7 cells when the breast cancer cells interacted with pre-treated BMSCs. Gene expression analysis indicated that pre-treatment of BMSCs with a combination of pioglitazone and rosiglitazone decreased the mRNA expression of Ki67 and proliferating cell nuclear antigen in MCF-7 cells. The pre-treatment did not induce mRNA expression of PPARγ, which is a sign of lipid accumulation. The level of vimentin protein was also associated with the FGF-4 protein expression level in the conditioned media of the pre-treated BMSCs. Bioinformatics analysis revealed that vimentin regulated the expression of FGF-4 through its interaction with SRY-box 2 and POU class 5 homeobox 1. CONCLUSIONS: The present study identified a novel intracellular protein that may represent the promising target in pre-treated BMSCs to decrease the proliferation of breast cancer MCF-7 cells for human health and wellness.
RESUMO
Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.
Assuntos
Antraquinonas , Apoptose , Neoplasias da Mama , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Pleurotus , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Antraquinonas/farmacologia , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Feminino , Apoptose/efeitos dos fármacos , Apoptose/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Pleurotus/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Breast cancer is a leading cause of cancer-related deaths among women. Cisplatin is used for treatment, but the development of resistance in cancer cells is a significant concern. This study aimed to investigate changes in the transcriptomes of cisplatin-resistant MCF7 cells. We conducted RNA sequencing of cisplatin-resistant MCF7 cells, followed by differential expression analysis and bioinformatic investigations to identify changes in gene expression and modified signal transduction pathways. We examined the size and quantity of extracellular vesicles. A total of 724 genes exhibited differential expression, predominantly consisting of protein-coding RNAs. Notably, two long non-coding RNAs (lncRNAs), NEAT1 and MALAT, were found to be dysregulated. Bioinformatic analysis unveiled dysregulation in processes related to DNA synthesis and repair, cell cycle regulation, immune response, and cellular communication. Additionally, modifications were observed in events associated with extracellular vesicles. Conditioned media from resistant cells conferred resistance to wild-type cells in vitro. Furthermore, there was an increase in the number of vesicles in cisplatin-resistant cells. Cisplatin-resistant MCF7 cells displayed differential RNA expression, including the dysregulation of NEAT1 and MALAT long non-coding RNAs. Key processes related to DNA and extracellular vesicles were found to be altered. The increased number of extracellular vesicles in resistant cells may contribute to acquired resistance in wild-type cells.
Assuntos
Cisplatino , Transcriptoma , Feminino , Humanos , Cisplatino/farmacologia , Células MCF-7 , Perfilação da Expressão Gênica , DNARESUMO
This study aimed to develop paclitaxel (PTX)-loaded PEGylated (PEG)-pH-sensitive (SpH) liposomes to enhance drug delivery efficiency and cytotoxicity against MCF-7 breast cancer cells. PTX-loaded PEG-SpH liposomes were prepared using the thin film hydration method. ATR-FTIR compatibility studies revealed no significant interactions among liposome formulation components. TEM images confirmed spherical morphology, stability, and an ideal size range (180-200 nm) for improved blood circulation. At pH 5.5, liposomes exhibited increased size and positive zeta potential, indicating pH-sensitive properties due to CHEMS response to the acidic tumor microenvironment. Conversely, at pH 7.4, liposomes showed a slightly larger size (199.25 ± 1.64 nm) and a more negative zeta potential (-36.94 ± 0.32 mV), suggesting successful PEG-SpH surface modification, enhancing stability, and reducing aggregation. PTX-loaded PEG-SpH liposomes demonstrated high encapsulation efficiency (84.57 ± 0.92% w/w) and drug loading capacity (4.12 ± 0.26% w/w). In-vitro drug release studies revealed accelerated first-order PTX release at pH 5.5 and a controlled zero-order release at pH 7.4. Cellular uptake studies on MCF-7 cells demonstrated enhanced PTX uptake, attributed to mPEG-PCL incorporation prolonging circulation time and CHEMS facilitating PTX release in the tumor microenvironment. Furthermore, PTX-loaded PEG-SpH liposomes exhibited significantly improved cytotoxicity with an IC50 value of 1.107 µM after 72-h incubation, approximately 90% lower than plain PTX solution. Stability studies confirmed the robustness of the liposomal formulation under various storage conditions. These findings highlight the potential of PEGylated pH-responsive liposomes as effective nanocarriers for enhancing PTX therapy against breast cancer.
Assuntos
Neoplasias da Mama , Liberação Controlada de Fármacos , Lipossomos , Paclitaxel , Polietilenoglicóis , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Paclitaxel/química , Humanos , Lipossomos/química , Células MCF-7 , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodosRESUMO
This study investigated the effects of ergosterol peroxide(EP) on the proliferation and apoptosis of MCF-7 breast cancer cells, explored its possible mechanisms of action, and verified the effects and mechanisms by in vitro experiments. Network pharmaco-logy was used to screen the target proteins of EP and construct target networks and protein-protein interaction(PPI) networks to predict the potential target proteins and related pathways involved in EP anti-breast cancer effects. The MTT assay was performed to measure the inhibitory effect of EP on MCF-7 cell proliferation, and the colony formation assay was used to assess the cell cloning ability. Flow cytometry and laser confocal microscopy were employed to evaluate cell apoptosis, mitochondrial membrane potential and reactive oxygen species(ROS) levels. Western blot analysis was conducted to examine the expression levels of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cytochrome C(Cyt C), caspase-7, cleaved caspase-7, phosphatidylinositol 3-kinase(PI3K), and se-rine/threonine kinase B(AKT) in MCF-7 cells treated with EP. The results of network pharmacology prediction yielded 173 common targets between EP and breast cancer; the results of Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis showed that EP treatment for breast cancer mainly affected the signaling pathways such as cancer pathway, PI3K-AKT signaling pathway, cellular senescence signaling pathway, and viral carcinogenesis pathway; and the MTT assay results showed that the viability of MCF-7 cells in the EP group was significantly lower than that in the control group, exhibiting a time-and concentration-dependent trend, and EP can inhibit colony formation of MCF-7 breast cancer cells. Treatment with 10, 20, and 40 µmol·L~(-1) EP for 24 h resulted in a significant increase in the total apoptosis rate of MCF-7 cells, a significant decrease in mitochondrial membrane potential, and a significant increase in ROS levels. In addition, treatment with EP led to an upregulation of Cyt C, Bax, and cleaved caspase-7 protein expression, and a downregulation of p-PI3K, p-AKT, and Bcl-2 protein expression in MCF-7 cells. Studies have shown that EP inhibits MCF-7 breast cancer cell proliferation and reduces colony formation by a mechanism that may be related to the PI3K-AKT pathway mediating the mitochondrial apoptotic pathway.
Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Ergosterol , Farmacologia em Rede , Humanos , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ergosterol/análogos & derivados , Ergosterol/farmacologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Citocromos c/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer-related death among women worldwide. Somatostatin (SST) and Cannabinoids have an anti-proliferative and pro-apoptotic effect, but the mechanisms of their actions remain elusive. In the present study, we have evaluated the effects of SST, Cannabidiol (CBD) alone or in combination on receptor expression, cell proliferation and apoptosis and related downstream signalling pathways in MDA-MB-231 and MCF-7 breast cancer cells. The results presented here demonstrate the cell type and agonist-dependent changes in receptor expression at the cell membrane, inhibition of cell proliferation and increased apoptosis following treatment with SST and CBD alone and in combination. In comparison to MDA-MB-231 cells, MCF-7 cells treated with SST alone and in combination with CBD exhibited inhibition of phosphorylated Protein Kinase B (pAKT) and phosphorylated-Phosphoinositide 3-Kinase (pPI3K) expression. Importantly, inhibition of PI3K/AKT activation was accompanied by enhanced PTEN expression in MCF-7 cells. These results highlight the possible interaction between SSTR and CBR subtypes with the implication in the modulation of receptor expression, cell viability and signal transduction pathways in a breast cancer cell type-dependent manner.
Assuntos
Neoplasias da Mama , Canabidiol , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Canabidiol/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Somatostatina/farmacologiaRESUMO
BACKGROUND: Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (PâRT) as compared to RT followed by palbociclib (RTâP). METHODS: The impact of cellular senescence on the interaction between RT and P was assessed by harnessing female INK-ATTAC mice, which express a dimerizable form of caspase 8 (CASP8) under the promoter of cyclin dependent kinase inhibitor 2A (Cdkn2a, coding for p16Ink4), as host for endogenous mammary tumors induced by the subcutaneous implantation of medroxyprogesterone acetate (MPA, M) pellets combined with the subsequent oral administration of 7,12-dimethylbenz[a]anthracene (DMBA, D). This endogenous mouse model of HR+ mammary carcinogenesis recapitulates key immunobiological aspects of human HR+ breast cancer. Mice bearing M/D-driven tumors were allocated to RT, P or their combination in the optional presence of the CASP8 dimerizer AP20187, and monitored for tumor growth, progression-free survival and overall survival. In parallel, induction of senescence in vitro, in cultured human mammary hormone receptor (HR)+ adenocarcinoma MCF7 cells, triple negative breast carcinoma MDA-MB-231 cells and mouse HR+ mammary carcinoma TS/A cells treated with RT, P or their combination, was determined by colorimetric assessment of senescence-associated ß-galactosidase activity after 3 or 7 days of treatment. RESULTS: In vivo depletion of p16Ink4-expressing (senescent) cells ameliorated the efficacy of PâRT (but not that of RTâP) in the M/D-driven model of HR+ mammary carcinogenesis. Accordingly, PâRT induced higher levels of cellular senescence than RâTP in cultured human and mouse breast cancer cell lines. CONCLUSIONS: Pending validation in other experimental systems, these findings suggest that a program of cellular senescence in malignant cells may explain (at least partially) the inferiority of PâRT versus RTâP in preclinical models of HR+ breast cancer.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Camundongos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina , Senescência Celular/fisiologia , Proteínas de Transporte/metabolismo , Carcinogênese , Microambiente Tumoral , Quinase 4 Dependente de Ciclina/metabolismoRESUMO
Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-ß receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.
Assuntos
Bacteriófago T7 , Neoplasias da Mama , Humanos , Feminino , Bacteriófago T7/genética , Fator A de Crescimento do Endotélio Vascular , Gangliosídeo G(M3) , Células MCF-7 , Neoplasias da Mama/genética , Doxorrubicina , Proteínas Nucleares/metabolismo , FosfoproteínasRESUMO
The interaction of metal nanoparticles (MNPs) with blood cells and tissues is essential from the perspectives of biocompatibility and the production of novel drug delivery systems. In the present study, biosynthesized-Fe3O4 nanoparticles (bio-Fe3O4 NPs) were prepared and bio-modified using Daphne mucronata Royle leaf extracts. The physicochemical properties of bio-Fe3O4 NPs were determined using UV-Visible spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD), dynamic light scattering (DLS), and Fourier transform infrared (FT-IR) analyses. According to the SEM analysis, the bio-Fe3O4 NPs are spherical-shaped with a size range of 10-30 nm. Antibacterial effects of bio-Fe3O4 NPs against Staphylococcus aureus ATCC 43300 and Pseudomonas aeruginosa ATCC 27853 bacteria were measured by minimum inhibition/bactericidal concentrations (MIC and MBC tests). Result showed that the bio-Fe3O4 NPs (300 ppm) revealed highest antibacterial effect on S. aureus ATCC 43300. Also, bio-Fe3O4 NPs have different cell viability in the human breast cancer cell line (MCF-7) and mouse embryonic fibroblast (MEF). The interaction of bio-Fe3O4 NPs with blood cells and the complete blood count (CBC) factor illustrated that the morphology of blood cells and platelet clumping did not influence by nanoparticles. Furthermore, histological analysis of the liver, spleen, and kidney did not show any abnormality upon exposure to 100 mg kg-1 bio-Fe3O4 NPs treated samples. Hence, the biosynthesized Fe3O4 NPs are a good candidate for applications in medical fields.
Assuntos
Nanopartículas de Magnetita , Staphylococcus aureus , Camundongos , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas de Magnetita/química , Fibroblastos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade MicrobianaRESUMO
INTRODUCTION: Worldwide, breast cancer is the most common cancer in women and is the main cause of death among all neoplasia in this group. Luminal A breast cancer represents approximately 70% of all breast cancers and is treated with hormone therapies targeting estrogen receptor alpha (ERα). Unfortunately, patients develop drug resistance leading to recurrence of neoplasia due to estrogen-independent ERα reactivation. Therefore, it is crucial to identify new molecular targets downstream ERα signaling pathway that allows the implementation of better treatments to improve the outcome of breast cancer patients. Overexpression of c-Fos, an ERα gene target, has been associated with increased cell motility, malignancy, metastasis, and invasion while its neutralization results in decreased breast cancer tumorigenesis. The aryl hydrocarbon receptor (AHR) ligands halogenated and polycyclic aromatic hydrocarbons, highly toxic compounds, down regulate c-Fos and ERα levels. The present study aimed to evaluate whether 6-formylindolo(3,2-b)carbazole (FICZ), a no toxic AHR agonist, modifies c-Fos levels in MCF-7 mammary carcinoma cells as well as to determine its effects on cell proliferation and migration. In addition, the possible mechanism through which FICZ mediates c-Fos levels in MCF-7 cells was investigated. METHODS: Initially, the effect of FICZ on c-Fos mRNA and protein levels in MCF-7 cells, untreated or treated with estradiol, was evaluated by qPCR and Western blot. 2,3,7,8-Tetrachloro-dibenzo-p-dioxin, an AHR prototype agonist, was used as a positive control. Next, we examined the effect of FICZ on MCF-7 cell proliferation and migration by cell counting, MTT, 3H-thymidine incorporation, and scratch-wound assays. Finally, the involvement of proteasome 26S on ERα and c-Fos protein degradation was investigated by the use of MG132 and Western blot. RESULTS: The data show that FICZ treatment downregulates c-Fos mRNA and protein levels, most likely by promoting ERα proteasome degradation, blocking MCF-7 cell proliferation and migration. The results also demonstrate that liganded ERα was required for FICZ-mediated ERα degradation. CONCLUSIONS: Activation of AHR results in a decreased MCF-7 cell proliferation and migration by ERα and c-Fos down regulation. Targeting AHR might be a promising therapy for breast cancer treatment, particularly when estrogen-independent ERα reactivation presents.
Assuntos
Neoplasias da Mama , Receptores de Hidrocarboneto Arílico , Humanos , Feminino , Células MCF-7 , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligantes , Proteólise , Neoplasias da Mama/genética , Estrogênios , Proliferação de Células , RNA Mensageiro/metabolismoRESUMO
Fe3O4/Au/porous Au nanohybrids being bi-functional nanoparticles with magnetic properties and high porosity, were synthesized and used for drug delivery. To achieve this purpose, after Fe3O4 nanoparticles synthesis, a gold layer coats them to increase their stability. Then, to improve the loading capacity of Fe3O4/Au nanoparticles, a shell of porous gold was synthesized on the Fe3O4/Au surface by creating an Ag-Au nanohybrid layer on Fe3O4/Au and dissolving the metallic silver atoms in HNO3 (0.01 M). The DLS results show that the synthesized nanohybrid has an average size of 68.0 ± 7.7 nm and a zeta potential of - 28.1 ± 0.2 mV. Finally, doxorubicin (DOX), as a pharmaceutical agent, was loaded onto the Fe3O4/Au/porous Au nanohybrids. The prepared nano-drug enhanced the therapeutic efficacy of DOX on MCF-7 cancer cells compared to the free DOX. These results confirmed a 1.5 times improvement in the antitumor activity of DOX-loaded Fe3O4/Au/porous Au nanohybrids.
Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Porosidade , Preparações Farmacêuticas , DoxorrubicinaRESUMO
Mitochondrial oxidative phosphorylation (OXPHOS) system dysfunction in cancer cells has been exploited as a target for anti-cancer therapeutic intervention. The downregulation of CR6-interacting factor 1 (CRIF1), an essential mito-ribosomal factor, can impair mitochondrial function in various cell types. In this study, we investigated whether CRIF1 deficiency induced by siRNA and siRNA nanoparticles could suppress MCF-7 breast cancer growth and tumor development, respectively. Our results showed that CRIF1 silencing decreased the assembly of mitochondrial OXPHOS complexes I and II, which induced mitochondrial dysfunction, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential depolarization, and excessive mitochondrial fission. CRIF1 inhibition reduced p53-induced glycolysis and apoptosis regulator (TIGAR) expression, as well as NADPH synthesis, leading to additional increases in ROS production. The downregulation of CRIF1 suppressed cell proliferation and inhibited cell migration through the induction of G0/G1 phase cell cycle arrest in MCF-7 breast cancer cells. Similarly, the intratumoral injection of CRIF1 siRNA-encapsulated PLGA nanoparticles inhibited tumor growth, downregulated the assembly of mitochondrial OXPHOS complexes I and II, and induced the expression of cell cycle protein markers (p53, p21, and p16) in MCF-7 xenograft mice. Thus, the inhibition of mitochondrial OXPHOS protein synthesis through CRIF1 deletion destroyed mitochondrial function, leading to elevated ROS levels and inducing antitumor effects in MCF-7 cells.
Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Células MCF-7 , Monoéster Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53 , Polietilenoglicóis/química , NanopartículasRESUMO
Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.
Assuntos
Antineoplásicos , Tiadiazóis , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Tiadiazóis/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular TumoralRESUMO
The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/metabolismo , Esfingomielinas , Ácido Ascórbico/farmacologia , Espectrometria de Massas em Tandem , Vitaminas/farmacologia , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
Background: We hypothesized that the antitumor effects of asiaticoside on breast cancer are driven by its ability to decrease the expression of tumor inflammation-promoting genes and increase apoptotic signaling. In this study, we aimed to better understand the mechanisms of action of asiaticoside as a chemical modulator or as a chemopreventive agent in breast cancer. Methods: MCF-7 cells were cultured and treated with 0, 20, 40, and 80 µM asiaticoside for 48 h. Fluorometric caspase-9, apoptosis, and gene expression analyses were conducted. For the xenograft experiments, we divided nude mice into the following 5 groups (10 animals per group): group I, control mice; group II, untreated tumor-bearing nude mice; group III, tumor-bearing nude mice treated with asiaticoside at weeks 1-2 and 4-7 and injected with MCF-7 cells at week 3; group IV, tumor-bearing nude mice injected with MCF-7 cells at week 3 and treated with asiaticoside beginning at week 6; and group V, nude mice treated with asiaticoside, as a drug control. After treatment, weight measurements were performed weekly. Tumor growth was determined and analyzed using histology and DNA and RNA isolation. Results: In MCF-7 cells, we found that asiaticoside increased caspase-9 activity. In the xenograft experiment, we found that TNF-α and IL-6 expression decreased (p < 0.001) via the NF-κB pathway. Conclusion: Overall, our data suggest that asiaticoside produces promising effects on tumor growth, progression, and tumor-associated inflammation in MCF-7 cells as well as a nude mouse MCF-7 tumor xenograft model.
Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Camundongos , Animais , Feminino , Células MCF-7 , NF-kappa B/metabolismo , Camundongos Nus , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Caspase 9/metabolismo , Neoplasias da Mama/tratamento farmacológico , ApoptoseRESUMO
Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.
Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carbonilação Proteica , Estresse Oxidativo , Nanopartículas Metálicas/química , Inflamação , Proliferação de CélulasRESUMO
Human health is experiencing several obstacles in the modern medical era, particularly cancer. As a result, the cancer therapeutic arsenal should be continually expanded with innovative small molecules that preferentially target tumour cells. In this study, we describe the development of two small molecule series (7a-d and 12a-e) based on the 1-benzyl-5-bromoindolin-2-one scaffold that connected through a hydrazone linker to a 4-arylthiazole (7a-d) or 4-methyl-5-(aryldiazenyl)thiazole (12a-e) moiety. The anticancer activity of all the reported indolin-2-one derivatives was assessed against breast (MCF-7) and lung (A-549) cancer cell lines. The 4-arylthiazole-bearing derivatives 7c and 7d revealed the best anticancer activity toward MCF-7 cells (IC50 = 7.17 ± 0.94 and 2.93 ± 0.47, respectively). Furthermore, the VEGFR-2 inhibitory activity for 7c and 7d was evaluated. Both molecules disclosed good inhibitory activity, and their IC50 values were equal to 0.728 µM and 0.503 µM, respectively. Additionally, the impacts of 7d on the cell cycle phases as well as on the levels of different apoptotic markers (caspase-3, caspase-9, Bax, and Bcl-2) were assessed. Molecular docking and dynamic simulations are carried out to explore the binding mode of 7d within the VEGFR-2 active site.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proliferação de Células , Antineoplásicos/química , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Urinary tract infection is an infectious disease that requires immediate treatment. It can occur in any age group and involves both genders equally. The present study was to check the resistance of some antibiotics and to assess the antibacterial potential of three extracts of three plants against notorious bacteria involved in urinary tract infections. Along with assessing the antibacterial activity of plant extracts, we checked for the anticancer potential of these extracts against the cancer cell lines MCF-7 and A2780. Cancer is the leading cause of mortality in developed countries. Determinations of total flavonoid content, total phenolic content, total alkaloid content, total tannin content, total carotenoid content, and total steroid content were performed. The disk diffusion method was used to analyze the antibacterial activity of plant extracts. Ethanolic extract of Selenicereus undatus showed sensitivity (25-28 mm) against bacteria, whereas chloroform and hexane extracts showed resistance against all bacteria except Staphylococcus (25 mm). Ethanolic extract of Pistacia vera L. showed sensitivity (22-25 mm) against bacteria, whereas chloroform and hexane extracts showed resistance. Ethanolic extract of Olea europaea L. showed sensitivity (8-16 mm) against all bacteria except Staphylococcus, whereas chloroform and hexane extracts showed resistance. Positive controls showed variable zones of inhibition (2-60 mm), and negative control showed 0-1 mm. The antibiotic resistance was much more prominent in the case of hexane and chloroform extracts of all plants, whereas ethanolic extract showed a sensitivity of bacteria against extracts. Both cell lines, MCF-7 and A2780, displayed decreased live cells when treated with plant extracts.