RESUMO
ABSTRACTThe deposition of ß-amyloid plaques, either due to their over-production or insufficient clearance, is an important pathological process in cognitive impairment and dementia. Icariin (ICA), a flavonoid compound extracted from Epimedium, has recently gained attention for numerous age-related diseases, such as neurodegenerative diseases. We aimed to explore the possible neuro-protective effect of ICA supplementation in colchicine-induced cognitive deficit rat model and exploring its effect on the ß-amyloid proteolytic enzymes. The study included four groups (10 rats each): normal control, untreated colchicine, colchicine + 10â mg/kg ICA, and colchicine + 30â mg/ kg ICA. Results revealed that intra-cerebro-ventricular colchicine injection produced neuronal morphological damage, ß amyloid deposition, and evident cognitive impairment in the behavioral assessment. Icariin supplementation in the two doses for 21 days attenuated neuronal death, reduced the ß amyloid levels, and improved memory consolidation. This was associated with modulation of the proteolytic enzymes (Neprilysin, Matrix Metalloproteinase-2, and insulin-degrading enzyme) concluding that ß-amyloid enzymatic degradation may be the possible therapeutic target for ICA.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Cognição , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismoRESUMO
Osteoarthritis (OA) is a disease characterized by degeneration of the joint complex due to cartilage destruction. Fraxetin, a widely used and studied coumarin compound extracted from a traditional Chinese herb (Qin Pi), has shown anti-inflammatory and antioxidant properties, but its effects on OA have not been studied. In the present study, western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) were used to evaluate the effects of fraxetin on IL-1ß-induced apoptotic activity, inflammatory responses, and catabolism in rat chondrocytes. The results showed that fraxetin prevented IL-1ß-induced apoptosis of chondrocytes and inhibited inflammatory mediator release by regulating the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB pathway in chondrocytes. Additionally, fraxetin suppressed the upregulation of matrix metalloproteinase 13 (MMP13) and degradation of collagen II in the extracellular matrix (ECM). Moreover, the effects of fraxetin in vivo were assessed in a monosodium iodoacetate (MIA)-induced rat model of OA using hematoxylin and eosin (H&E) and Safranin O-fast green staining and magnetic resonance imaging (MRI). The results showed that fraxetin protected the cartilage against destruction. In conclusion, fraxetin could be a potential therapeutic for OA.
RESUMO
The polyphenolic extract (PE) from extra virgin olive oil (EVOO) has been shown to possess important anti-inflammatory and joint protective properties in murine models of rheumatoid arthritis (RA). This study was designed to evaluate the effects of PE on IL-1ß-activated human synovial fibroblasts SW982 cell line. PE from EVOO treatment inhibited IL-1ß-induced matrix metalloproteases (P<0·001), TNF-α and IL-6 production (P<0·001). Similarly, IL-1ß-induced cyclo-oxygenase-2 and microsomal PGE synthase-1 up-regulations were down-regulated by PE (P<0·001). Moreover, IL-1ß-induced mitogen-activated protein kinase (MAPK) phosphorylation and NF-κB activation were ameliorated by PE (P<0·001). These results suggest that PE from EVOO reduces the production of proinflammatory mediators in human synovial fibroblasts; particularly, these protective effects could be related to the inhibition of MAPK and NF-κB signalling pathways. Taken together, PE from EVOO probably could provide an attractive complement in management of diseases associated with over-activation of synovial fibroblasts, such as RA.
Assuntos
Inflamação/tratamento farmacológico , Interleucina-1beta/farmacologia , Azeite de Oliva/química , Polifenóis/farmacologia , Membrana Sinovial/efeitos dos fármacos , Anti-Inflamatórios , Artrite Reumatoide/tratamento farmacológico , Linhagem Celular , Ciclo-Oxigenase 2/genética , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , Interleucina-6/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/análise , Polifenóis/isolamento & purificação , Prostaglandina-E Sintases/genética , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Sinovite/prevenção & controle , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
The functional significance of pomegranate (POM) supplementation on physiological responses during and following exercise is currently unclear. This systematic review aimed (i) to evaluate the existing literature assessing the effects of POM supplementation on exercise performance and recovery; exercise-induced muscle damage, oxidative stress, inflammation; and cardiovascular function in healthy adults and (ii) to outline the experimental conditions in which POM supplementation is more or less likely to benefit exercise performance and/or recovery. Multiple electronic databases were used to search for studies examining the effects of POM intake on physiological responses during and/or following exercise in healthy adult. Articles were included in the review if they investigated the effects of an acute or chronic POM supplementation on exercise performance, recovery and/or physiological responses during or following exercise. The existing evidence suggests that POM supplementation has the potential to confer antioxidant and anti-inflammatory effects during and following exercise, to improve cardiovascular responses during exercise, and to enhance endurance and strength performance and post-exercise recovery. However, the beneficial effects of POM supplementation appeared to be less likely when (i) unilateral eccentric exercise was employed, (ii) the POM administered was not rich in polyphenols (<1·69 g/l) and (iii) insufficient time was provided between POM-ingestion and the assessment of physiological responses/performance (≤1 h). The review indicates that POM has the potential to enhance exercise performance and to expedite recovery from intensive exercise. The findings and recommendations from this review may help to optimise POM-supplementation practice in athletes and coaches to potentially improve exercise-performance and post-exercise recovery.
Assuntos
Exercício Físico , Lythraceae/química , Extratos Vegetais/química , Adulto , Antioxidantes/metabolismo , Estudos Cross-Over , Suplementos Nutricionais , Feminino , Humanos , Inflamação , Masculino , Fadiga Muscular , Força Muscular , Mialgia/terapia , Terapia Nutricional , Ciências da Nutrição , Estresse Oxidativo , Polifenóis/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto JovemRESUMO
Probiotics are known to regulate host immunity by interacting with systemic and mucosal immune cells as well as intestinal epithelial cells. Supplementation with certain probiotics has been reported to be effective against various disorders, including immune-related diseases. However, little is known about the effectiveness of Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263) in the management of autoimmune diseases, especially systemic lupus erythematosus (SLE). NZB/W F1 mice, which are a lupus-prone animal model, were orally gavaged with GMNL-32, GMNL-89 or GMNL-263 to investigate the effects of these Lactobacillus strains on liver injuries in NZB/W F1 mice. The results thus obtained reveal that supplementary GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice ameliorates hepatic apoptosis and inflammatory indicators, such as matrix metalloproteinase-9 activity and C-reactive protein and inducible nitric oxide synthase expressions. In addition, supplementation with GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice reduced the expressions of hepatic IL-1ß, IL-6 and TNF-α proteins by suppressing the mitogen-activated protein kinase and NF-κB signalling pathways. These findings, presented here for the first time, reveal that GMNL-32, GMNL-89 and GMNL-263 mitigate hepatic inflammation and apoptosis in lupus-prone mice and may support an alternative remedy for liver disorders in cases of SLE.
Assuntos
Lacticaseibacillus paracasei/classificação , Hepatopatias/etiologia , Lúpus Eritematoso Sistêmico/complicações , Animais , Apoptose , Proteína C-Reativa/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Limosilactobacillus reuteri , Hepatopatias/prevenção & controle , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NZB , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Probióticos , Distribuição Aleatória , Transdução de SinaisRESUMO
The intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal/fisiopatologia , Gastroenteropatias , Humanos , Inflamação , IntestinosRESUMO
Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered as a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and ß-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and aetiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulphide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.
Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miocárdio/metabolismo , Miocárdio/patologiaRESUMO
This study systematically and comprehensively analyzed the characteristics of matrix metalloproteinases (MMPs) in gastric cancer (GC) and revealed the relationship between MMPs and prognoses, clinicopathological features, tumor microenvironment, gene mutations, and drug therapy response in patients with GC. Based on the mRNA expression profiles of 45 MMP-related genes in GC, we established a model that classified GC patients into three groups based on cluster analysis of the mRNA expression profiles. The 3 groups of GC patients showed significantly different prognoses as well as tumor microenvironmental characteristics. Next, we used Boruta's algorithm and PCA method to establish an MMP scoring system and found that lower MMP scores were associated with better prognoses, lower clinical stages, better immune cell infiltration, lower degrees of immune dysfunction and rejection, and more genetic mutations. Whereas a high MMP score was the opposite. These observations were further validated with data from other datasets, showing the robustness of our MMP scoring system. Overall, MMP could be involved in the tumor microenvironment (TME), clinical features, and prognosis of GC. An in-depth study of MMP patterns can better understand the indispensable role of MMP in the development of GC and reasonably assess the survival prognosis, clinicopathological features, and drug efficacy of different patients, thus providing clinicians with a broader vision of GC progression and treatment.
RESUMO
Background: Aim of this study was to investigate immune cells and subsets in different stages of human coronary artery disease with a novel multiplex immunohistochemistry (mIHC) technique. Methods: Human left anterior descending coronary artery specimens were analyzed: eccentric intimal thickening (N = 11), pathological intimal thickening (N = 10), fibroatheroma (N = 9), and fibrous plaque (N = 9). Eccentric intimal thickening was considered normal, and pathological intimal thickening, fibroatheroma, and fibrous plaque were considered diseased coronary arteries. Two mIHC panels, consisting of six and five primary antibodies, autofluoresence, and DAPI, were used to detect adaptive and innate immune cells. Via semi-automated analysis, (sub)types of immune cells in whole plaques and specific plaque regions were quantified. Results: Increased numbers of CD3+ T cells (P < 0.001), CD20+ B cells (P = 0.013), CD68+ macrophages (P = 0.003), CD15+ neutrophils (P = 0.017), and CD31+ endothelial cells (P = 0.024) were identified in intimas of diseased coronary arteries compared to normal. Subset analyses of T cells and macrophages showed that diseased coronary arteries contained an abundance of CD3+CD8- non-cytotoxic T cells and CD68+CD206- non-M2-like macrophages. Proportions of CD3+CD45RO+ memory T cells were similar to normal coronary arteries. Among pathological intimal thickening, fibroatheroma, and fibrous plaque, all immune cell numbers and subsets were similar. Conclusions: The type of immune response does not differ substantially between different stages of plaque development and may provide context for mechanistic research into immune cell function in atherosclerosis. We provide the first comprehensive map of immune cell subtypes across plaque types in coronary arteries demonstrating the potential of mIHC for vascular research.
RESUMO
Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.
RESUMO
Background: Osteosarcoma is most prevalently found primary malignant bone tumors, with primary metastatic patients accounting for approximately 25% of all osteosarcoma patients, yet their 5-year OS remains below 30%. Bilirubin plays a key role in oxidative stress-associated events, including malignancies, making the regulation of its serum levels a potential anti-tumor strategy. Herein, we investigated the association of osteosarcoma prognosis with serum levels of TBIL, IBIL and DBIL, and further explored the mechanisms by which bilirubin affects tumor invasion and migration. Methods: ROC curve was plotted to assess survival conditions based on the determined optimal cut-off values and the AUC. Then, Kaplan-Meier curves, along with Cox proportional hazards model, was applied for survival analysis. Inhibitory function of IBIL on the malignant properties of osteosarcoma cells was examined using the qRT-PCR, transwell assays, western blotting, and flow cytometry. Results: We found that, versus osteosarcoma patients with pre-operative higher IBIL (>8.9 µmol/L), those with low IBIL (≤8.9 µmol/L) had shorter OS and PFS. As indicated by the Cox proportional hazards model, pre-operative IBIL functioned as an independent prognostic factor for OS and PFS in total and gender-stratified osteosarcoma patients (P < 0.05 for all). In vitro experiments further confirmed that IBIL inhibits PI3K/AKT phosphorylation and downregulates MMP-2 expression via reducing intracellular ROS, thereby decreasing the invasion of osteosarcoma cells. Conclusions: IBIL may serve as an independent prognostic predictor for osteosarcoma patients. IBIL impairs invasion of osteosarcoma cells through repressing the PI3K/AKT/MMP-2 pathway by suppressing intracellular ROS, thus inhibiting its metastatic potential.
RESUMO
Background & Aims: Biliary tract cancer (BTC) is associated with a dismal prognosis, partly because it is typically diagnosed late, highlighting the need for diagnostic biomarkers. The purpose of this project was to identify and validate multiprotein signatures that could differentiate patients with BTC from non-cancer controls. Methods: In this study, we included treatment-naïve patients with BTC, healthy controls, and patients with benign conditions including benign biliary tract disease. Participants were divided into three non-overlapping cohorts: a case-control-based discovery cohort (BTC = 186, controls = 249); a case-control-based validation cohort (validation cohort 1: BTC = 113, controls = 241); and a cohort study-based validation cohort including participants (BTC = 8, controls = 132) referred for diagnostic work-up for suspected cancer (validation cohort 2). Immuno-Oncology (I-O)-related proteins were measured in serum and plasma using a proximity extension assay (Olink Proteomics). Lasso and Ridge regressions were used to generate protein signatures of I-O-related proteins and carbohydrate antigen 19-9 (CA19-9) in the discovery cohort. Results: Sixteen protein signatures, including 2 to 82 proteins, were generated. All signatures included CA19-9 and chemokine C-C motif ligand 20. Signatures discriminated between patients with BTC vs. controls, with AUCs ranging from 0.95 to 0.99 in the discovery cohort and 0.94 to 0.97 in validation cohort 1. In validation cohort 2, AUCs ranged from 0.84 to 0.94. Nine signatures achieved a specificity of 82% to 84% while keeping a sensitivity of 100% in validation cohort 2. All signatures performed better than CA19-9, and signatures including >15 proteins showed the best performance. Conclusion: The study demonstrated that it is possible to generate protein signatures that can successfully differentiate patients with BTC from non-cancer controls. Impact and implications: We attempted to find blood sample-based protein profiles that could differentiate patients with biliary tract cancer from those without cancer. Several profiles were found and tested in different groups of patients. The profiles were successful at identifying most patients with biliary tract cancer, pointing towards the utility of multiprotein signatures in this context.
RESUMO
Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine. However, due to the rapid clearance capacity of the circulatory system, EVs are barely able to act persistently at specific sites for repair of target tissues. Hydrogels have good biocompatibility and loose and porous structural properties that allow them to serve as EV carriers, thereby prolonging the retention in certain specific areas and slowing the release of EVs. When EVs are needed to function at specific sites, the EV-loaded hydrogels can stand as an excellent approach. In this review, we first introduce the sources, roles, and extraction and characterization methods of EVs and describe their current application status. We then review the different types of hydrogels and discuss factors influencing their abilities to carry and release EVs. We summarize several strategies for loading EVs into hydrogels and characterizing EV-loaded hydrogels. Furthermore, we discuss application strategies for EV-loaded hydrogels and review their specific applications in tissue regeneration and repair. This article concludes with a summary of the current state of research on EV-loaded hydrogels and an outlook on future research directions, which we hope will provide promising ideas for researchers.
RESUMO
BACKGROUND: UVA1 rays (340-400 nm) contribute to carcinogenesis, immunosuppression, hyperpigmentation, and aging. Current sunscreen formulas lack sufficient absorption in the 370-400 nm wavelengths range. Recently, a new UVA1 filter, Methoxypropylamino Cyclohexenylidene Ethoxyethylcyanoacetate (MCE) exhibiting a peak of absorption at 385 nm, was approved by the Scientific Committee on Consumer Safety for use in sunscreen products. These studies evaluated, in a three-dimensional skin model and in vivo, the protection afforded by state-of-the-art sunscreen formulations enriched with MCE. TRIAL DESIGN: This study is a monocentric, double-blinded, randomized, and comparative trial. This study is registered at ClinicalTrials.gov with the identification number NCT04865094. METHODS: The efficacy of sunscreens with MCE was compared with that of reference formulas. In a three-dimensional skin model, histology, protein, and gene expression were analyzed. In the clinical trial, pigmentation was analyzed in 19 volunteers using colorimetric measurements and visual scoring. RESULTS: MCE addition in reference formulas enlarged the profile of absorption up to 400 nm; reduced UVA1-induced dermal and epidermal alterations at cellular, biochemical, and molecular levels; and decreased UVA1-induced pigmentation. CONCLUSIONS: Addition of MCE absorber in sunscreen formulations leads to full coverage of UV spectrum and improved UVA1 photoprotection. The data support benefits in the long term on sun-induced consequences, especially those related to public health care issues.
RESUMO
Objectives: This study investigated genetic polymorphism of matrix metalloproteinases (MMP) -2 and -9 in oral lichen planus (OLP) and their association with the basement membrane status. Study design: This case-control study involved genotyping of peripheral blood sample of 32 OLP patients and 106 ethnically matched controls. Single nucleotide polymorphisms (SNP) that were assessed in the groups were- MMP9 rs3918242, MMP9 rs17576 and MMP2 rs865094. Basement membrane status of the OLP biopsy samples was microscopically assessed and recorded following Periodic acid Schiff staining. Results: MMP9 rs3918242 showed significant genotypic and allelic associations between OLP subjects and controls. It was also significantly associated with intact basement membranes in OLP cases with increased frequency of 'TT' genotype and 'T' allele. No association was found with regard to MMP9 rs17576 and MMP2 rs865094. Conclusion: Biallelic substitution at the promoter region of MMP9 (rs3918242) gene may be associated with increased risk of development of OLP. It may be involved in compromising the integrity of the basement membrane junction.
RESUMO
We hypothesized that excess endothelial-associated von Willebrand factor (vWF) and secondary platelet adhesion contribute to aortic valve stenosis (AS). We studied hyperlipidemic mice lacking ADAMTS13 (LDLR -/- AD13 -/- ), which cleaves endothelial-associated vWF multimers. On echocardiography and molecular imaging, LDLR -/- AD13 -/- compared with control strains had increased aortic endothelial vWF and platelet adhesion and developed hemodynamically significant AS, arterial stiffening, high valvulo-aortic impedance, and secondary load-dependent reduction in LV systolic function. Histology revealed leaflet thickening and calcification with valve interstitial cell myofibroblastic and osteogenic transformation, and evidence for TGFß1 pathway activation. We conclude that valve leaflet endothelial vWF-platelet interactions promote AS through juxtacrine platelet signaling.
RESUMO
Introduction: Increased catabolism of the extracellular matrix is observed under degenerative disc disease (DDD). The cleavage of extracellular matrix proteins in the nucleus pulposus (NP) by either matrix metalloproteinases (MMPs) or a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs) is believed to be involved in the degeneration, but the mechanisms are not known. Research question: Here, we examine the correlation between expression of several MMPs and ADAMTSs subtypes in lumbar discs from 34 patients with low back pain (LBP) undergoing 1-2 level lumbar fusion surgery (L4/L5 and/or L5/S1) for DDD with or without spondylolisthesis. Materials and Methods: The mRNA levels of MMPs (subtypes 1, 2, 3, 10, and 13) and ADAMTSs (subtypes 1, 4, and 5) were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR) and correlated to the Pfirrmann magnetic resonance imaging classification system (grade I-V) of lumbar DDD. Results: We find a highly significant positive correlation between Pfirrmann grades and the gene expression of MMP1 (r=0.67, p=0.0001), MMP3 (r=0.61, p=0.0002), MMP10 (r=0.6701, p=0.0001), MMP13 (r=0.48, p=0.004), ADAMTS1 (r=0.67, p=0.0001), and ADAMTS5 (r=0.53, p=0.0017). The similar regulation of these transcript suggests their involvement in disc degeneration. Interestingly, a post hoc analysis (uncorrected p-values) also demonstrated a positive correlation between expression of TNF-α, IL-6 and both ADAMTSs/MMPs and the Pfirrmann grades. Discussion and Conclusion: These findings show that disc degradation in DDD is strongly associated with the expression of some metalloproteinases.
RESUMO
Epithelial-mesenchymal transition (EMT) plays a pivotal role in cancer progression and metastasis in many types of malignancies, including colorectal cancer. Although the importance of EMT is also considered in colorectal neuroendocrine carcinoma (NEC), its regulatory mechanisms have not been elucidated. We recently established a human colorectal NEC cell line, SS-2. In this study, we aimed to clarify whether these cells were sensitive to transforming growth factor beta 1 (TGF-ß1) and whether EMT could be induced through TGF-ß1/Smad signaling, with the corresponding NEC cell-specific changes in invasiveness. In SS-2 cells, activation of TGF-ß1 signaling, as indicated by phosphorylation of Smad2/3, was dose-dependent, demonstrating that SS-2 cells were responsive to TGF-ß1. Analysis of EMT markers showed that mRNA levels changed with TGF-ß1 treatment and that E-cadherin, an EMT marker, was expressed in cell-cell junctions even after TGF-ß1 treatment. Invasion assays showed that TGF-ß1-treated SS-2 cells invaded more rapidly than non-treated cells, and these cells demonstrated increased metalloproteinase activity and cell adhesion. Among integrins involved in cell-to-matrix adhesion, α2-integrin was exclusively upregulated in TGF-ß1-treated SS-2 cells, but not in other colon cancer cell lines, and adhesion and invasion were inhibited by an anti-α2-integrin blocking antibody. Our findings suggest that α2-integrin may represent a novel therapeutic target for the metastasis of colorectal NEC cells.
RESUMO
Emerging evidence supports that intestinal microbial metabolite short-chain fatty acids (SCFAs) increase the pool of regulatory T cells (Tregs) in the colonic lamina propria (cLP) and protect against nonintestinal inflammatory diseases, such as atherosclerosis and post-infarction myocardial inflammation. However, whether and how SCFAs protect the inflamed aortas of subjects with abdominal aortic aneurysm (AAA) remains unclear. Here, the authors revealed the protective effect of SCFAs on AAA in mice and the expansion of Tregs in the cLP, and propionate exerted Treg-dependent protection against AAA by promoting the recirculation of cLP-Tregs through colonic draining lymph nodes (dLNs) to the inflamed aorta.
RESUMO
Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host-environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic antiâtype 2 inflammation therapies may improve dysfunctional skin barrier in AD.