Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chromosome Res ; 30(1): 59-75, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064347

RESUMO

Meiotic homologous chromosomes synapse and undergo crossing over (CO). In many eukaryotes, both synapsis and crossing over require the induction of double stranded breaks (DSBs) and subsequent repair via homologous recombination. In these organisms, two key proteins are recombinases RAD51 and DMC1. Recombinase-modulators HOP2 and MND1 assist RAD51 and DMC1 and also are required for synapsis and CO. We have investigated the hop2-1 phenotype in Arabidopsis during the segregation stages of both meiosis and mitosis. Despite a general lack of synapsis during prophase I, we observed extensive, stable interconnections between nonhomologous chromosomes in diploid hop2-1 nuclei in first and second meiotic divisions. Using γH2Ax as a marker of unrepaired DSBs, we detected γH2AX foci from leptotene through early pachytene but saw no foci from mid-pachytene onward. We conclude that the bridges seen from metaphase I onward are due to mis-repaired DSBs, not unrepaired ones. Examining haploids, we found that wild type haploids produce only univalents, but hop2-1 haploids like hop2-1 diploids have illegitimate connections stable enough to produce bridged chromosomes during segregation. Our results suggest that HOP2 has a significant active role in preventing repairs that use nonhomologous chromosomes during meiosis. We also found evidence that HOP2 plays a role in preventing illegitimate repair of radiation-induced DSBs in rapidly dividing petal cells. We conclude that HOP2 in Arabidopsis plays both a positive role in promoting synapsis and a separable role in preventing DSB repair using nonhomologous chromosomes. SIGNIFICANCE STATEMENT : The fidelity of homologous recombination (HR) during meiosis is essential to the production of viable gametes and for maintaining genome integrity in vegetative cells. HOP2 is an important protein for accurate meiotic HR in plants. We have found evidence of high levels of illegitimate repairs between nonhomologous chromosomes during meiosis and in irradiated petal cells in hop2-1 mutants, suggesting a role for HOP2 beyond its established role in synapsis and crossing over.


Assuntos
Arabidopsis , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Rad51 Recombinase/genética
2.
J Biol Chem ; 294(2): 490-501, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420424

RESUMO

Homologous recombination (HR) is a universally conserved DNA repair pathway that can result in the exchange of genetic material. In eukaryotes, HR has evolved into an essential step in meiosis. During meiosis many eukaryotes utilize a two-recombinase pathway. This system consists of Rad51 and the meiosis-specific recombinase Dmc1. Both recombinases have distinct activities during meiotic HR, despite being highly similar in sequence and having closely related biochemical activities, raising the question of how these two proteins can perform separate functions. A likely explanation for their differential regulation involves the meiosis-specific recombination proteins Hop2 and Mnd1, which are part of a highly conserved eukaryotic protein complex that participates in HR, albeit through poorly understood mechanisms. To better understand how Hop2-Mnd1 functions during HR, here we used DNA curtains in conjunction with single-molecule imaging to measure and quantify the binding of the Hop2-Mnd1 complex from Saccharomyces cerevisiae to recombination intermediates comprising Rad51- and Dmc1-ssDNA in real time. We found that yeast Hop2-Mnd1 bound rapidly to Dmc1-ssDNA filaments with high affinity and remained bound for ∼1.3 min before dissociating. We also observed that this binding interaction was highly specific for Dmc1 and found no evidence for an association of Hop2-Mnd1 with Rad51-ssDNA or RPA-ssDNA. Our findings provide new quantitative insights into the binding dynamics of Hop2-Mnd1 with the meiotic presynaptic complex. On the basis of these findings, we propose a model in which recombinase specificities for meiotic accessory proteins enhance separation of the recombinases' functions during meiotic HR.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/análise , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Meiose , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise
3.
J Biol Chem ; 291(10): 4928-38, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26709229

RESUMO

Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Sequência de Bases , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Transativadores/metabolismo
4.
J Proteome Res ; 14(12): 5048-62, 2015 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-26535604

RESUMO

The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HCD-based LC-MS/MS detection prior to data evaluation. We applied two different homobifunctional amine-reactive cross-linkers (DSS and BS(2)G) and one zero-length heterobifunctional cross-linker (EDC). Cross-linked peptides of four biological replicates were analyzed prior to 3D structure prediction by protein threading and protein-protein docking for cross-link-guided molecular modeling. Miniaturization of the size-exclusion enrichment step reduced the required starting material, led to a high amount of cross-linked peptides, and allowed the analysis of replicates. The major interaction site of HOP2-MND1 was identified in the central coiled-coil domains, and an open colinear parallel arrangement of HOP2 and MND1 within the complex was predicted. Moreover, flexibility of the C-terminal capping helices of both complex partners was observed, suggesting the coexistence of a closed complex conformation in solution.


Assuntos
Proteínas de Arabidopsis/química , Fosfotransferases/química , Proteínas de Arabidopsis/metabolismo , Carbodi-Imidas/química , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Complexos Multiproteicos/química , Fosfotransferases/metabolismo , Conformação Proteica , Multimerização Proteica , Succinimidas/química , Espectrometria de Massas em Tandem , Fluxo de Trabalho
5.
J Biol Chem ; 289(26): 18076-86, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24798326

RESUMO

During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.


Assuntos
Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Éxons , Meiose , Dados de Sequência Molecular , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
6.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747711

RESUMO

HOP2 is a conserved protein that plays a positive role in homologous chromosome pairing and a separable role in preventing illegitimate connections between nonhomologous chromosome regions during meiosis. We employed ChIP-seq to discover that Arabidopsis HOP2 binds along the length of all chromosomes, except for centromeric and nucleolar organizer regions, and no binding sites were detected in the organelle genomes. A large number of reads were assigned to the HOP2 locus itself, yet TAIL-PCR and SNP analysis of the aligned sequences indicate that many of these reads originate from the transforming T-DNA, supporting the role of HOP2 in preventing nonhomologous exchanges. The 292 ChIP-seq peaks are largely found in promoter regions and downstream from genes, paralleling the distribution of recombination hotspots, and motif analysis revealed that there are several conserved sequences that are also enriched at crossover sites. We conducted coimmunoprecipitation of HOP2 followed by LC-MS/MS and found enrichment for several proteins, including some histone variants and modifications that are also known to be associated with recombination hotspots. We propose that HOP2 may be directed to chromatin motifs near double strand breaks, where homology checks are proposed to occur.

7.
Cell Rep ; 42(5): 112484, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163373

RESUMO

The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo do DNA , Dano ao DNA , Proteína BRCA1/genética , Reparo de DNA por Recombinação , Linhagem Celular Tumoral
8.
Med Oncol ; 40(1): 14, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352167

RESUMO

Hepatocellular carcinoma is the cancer with the highest incidence among liver cancers and how to treat this cancer effectively is still a difficult problem we must face. We selected meiotic nuclear divisions 1 (MND1) as the study object by combining data from The Cancer Genome Atlas (TCGA) database with prognostic survival analysis. We validated the value of MND1 in evaluating the prognosis of hepatocellular carcinoma through a diagnostic and prognostic model. At the same time, cellular experiments were used to demonstrate the effect of MND1 on hepatocellular carcinoma proliferation and migration. We used short hairpin RNA (shRNA) to knock down MND1 in Hun7 and HCCLM3 cell lines. Through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays, we found that knocking down MND1 reduced the proliferation of cells. Through wound healing and Transwell assays, we found that knocking down MND1 reduced cell migration and invasion. Moreover, we found that MND1 can promote the proliferation, migration, and invasion of Hep3B cells by overexpressing MND1. Therefore, in general, MND1 is expected to be a gene that can effectively diagnose and treat hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno , Divisão do Núcleo Celular , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética
9.
Aging (Albany NY) ; 14(18): 7416-7442, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098680

RESUMO

Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be an effective treatment strategy for KIRC patients with high expression of MND1.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Humanos , Rim/patologia , Neoplasias Renais/patologia , Prognóstico
10.
Front Oncol ; 12: 1081510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698420

RESUMO

Background: Patients with hepatocellular carcinoma (HCC) have poor prognosis, especially in advanced stages. Targeted therapy is the main treatment for advanced HCC patients, but the optimal targets for HCC remain poorly understood. The main purpose of this study was to identify potential novel prognostic markers and therapeutic targets. Methods: Firstly, differentially expressed genes (DEGs) in HCC were identified from the Gene Expression Omnibus (GEO) database. The expression, significance in prognosis, and potential mechanisms of DEGs were analyzed using GEPIA, TIMER, HPA, Kaplan Meier Plotter, CBioPortal, miRWalk, TargetScan, and ENCORI databases. Immunohistochemical staining was used to determine the protein expression levels of potential candidate genes. Results: The mRNA levels of MND1, STXBP6, and CLGN were significantly increased in HCC (p< 0.01). HCC patients with elevated CLGN mRNA levels had poorer overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and disease-specific survival (DSS) (p < 0.05). Higher MND1 mRNA levels significantly correlated with poorer DFS in HCC patients (p< 0.05). However, there was no significant correlation between STXBP6 expression and prognosis of HCC (p> 0.05). Further analysis revealed that patients with elevated CLGN mRNA expression in advanced pathology stages had poorer prognosis (p< 0.01). In addition, CLGN protein levels were elevated in HCC compared to their levels in normal tissues. The mRNA levels of CLGN had no significant correlation with the abundance of six common tumor infiltrating lymphocytes in HCC (COR < 0.5). Moreover, the mutation rate of CLGN was less than 1% in HCC patients (10/1089). Finally, the expression level of hsa-miR-194-3p in HCC was significantly lower than that in normal tissues (p < 0.05), and prognosis of HCC with low expression of hsa-miR-194 was poor (p < 0.05). Conclusion: The upregulation of CLGN in HCC is significantly associated with poor patient prognosis, especially in the advanced stages, and may be regulated by hsa-miR-194-3p. These findings suggest that CLGN may be closely related to the progression of HCC, and is a potential therapeutic target and prognostic indicator for patients with advanced HCC.

11.
Cancer Commun (Lond) ; 41(6): 492-510, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33734616

RESUMO

BACKGROUND: Considering the increase in the proportion of lung adenocarcinoma (LUAD) cases among all lung cancers and its considerable contribution to cancer-related deaths worldwide, we sought to identify novel oncogenes to provide potential targets and facilitate a better understanding of the malignant progression of LUAD. METHODS: The results from the screening of transcriptome and survival analyses according to the integrated Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) data were combined, and a promising risk biomarker called meiotic nuclear divisions 1 (MND1) was selectively acquired. Cell viability assays and subcutaneous xenograft models were used to validate the oncogenic role of MND1 in LUAD cell proliferation and tumor growth. A series of assays, including mass spectrometry, co-immunoprecipitation (Co-IP), and chromatin immunoprecipitation (ChIP), were performed to explore the underlying mechanism. RESULTS: MND1 up-regulation was identified to be an independent risk factor for overall survival in LUAD patients evaluated by both tissue microarray staining and third party data analysis. In vivo and in vitro assays showed that MND1 promoted LUAD cell proliferation by regulating cell cycle. The results of the Co-IP, ChIP and dual-luciferase reporter assays validated that MND1 competitively bound to tumor suppressor Kruppel-like factor 6 (KLF6), and thereby protecting E2F transcription factor 1 (E2F1) from KLF6-induced transcriptional repression. Luciferase reporter and ChIP assays found that E2F1 activated MND1 transcription by binding to its promoter in a feedback manner. CONCLUSIONS: MND1, KLF6, and E2F1 form a positive feedback loop to regulate cell cycle and confer DDP resistance in LUAD. MND1 is crucial for malignant progression and may be a potential therapeutic target in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular , Divisão do Núcleo Celular , Fator de Transcrição E2F1/genética , Retroalimentação , Humanos , Fator 6 Semelhante a Kruppel , Neoplasias Pulmonares/genética
12.
FEBS J ; 282(13): 2444-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953379

RESUMO

During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.


Assuntos
Reparo do DNA , Meiose , Recombinação Genética , Animais , Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas Nucleares/fisiologia , Rad51 Recombinase/fisiologia , Transativadores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA