RESUMO
A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.
Assuntos
Metabolismo Energético/genética , Epigênese Genética , Histona Acetiltransferases/metabolismo , Mitocôndrias Musculares/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Cardiomiopatia Hipertrófica/genética , Respiração Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HeLa , Insuficiência Cardíaca/genética , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/genéticaRESUMO
Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.
Assuntos
Histona Acetiltransferases/genética , Homeostase/genética , Transcrição Gênica/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Células THP-1RESUMO
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation is incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (Msl3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. Msl3, acting independently of the rest of the male-specific lethal complex, promotes transcription of genes, including a germline-enriched ribosomal protein S19 paralog RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, Msl3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.
Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Oogênese , Oogônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Meiose , Proteínas Nucleares/genética , Oogônios/citologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/genéticaRESUMO
Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Domínios Proteicos , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Masculino , Feminino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Ubiquitinação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/químicaRESUMO
BACKGROUND: Male-specific lethal 3 (Msl3) is a member of the chromatin-associated male-specific lethal MSL complex, which is responsible for the transcriptional upregulation of genes on the X chromosome in males of Drosophila. Although the dosage complex operates differently in mammals, the Msl3 gene is conserved from flies to humans. Msl3 is required for meiotic entry during Drosophila oogenesis. Recent reports indicate that also in primates, Msl3 is expressed in undifferentiated germline cells before meiotic entry. However, if Msl3 plays a role in the meiotic entry of mammals has yet to be explored. RESULTS: To understand, if Msl3a plays a role in the meiotic entry of mammals, we used mouse spermatogenesis as a study model. Analyses of single-cell RNA-seq data revealed that, in mice, Msl3 is mostly expressed in meiotic cells. To test the role of Msl3 in meiosis, we used a male germline-specific Stra8-iCre driver and a newly generated Msl3flox conditional knock-out mouse line. Msl3 conditional loss-of-function in spermatogonia did not cause spermatogenesis defects or changes in the expression of genes related to meiosis. CONCLUSIONS: Our data suggest that, in mice, Msl3 exhibits delayed expression compared to Drosophila and primates, and loss-of-function mutations disrupting the chromodomain of Msl3 alone do not impede meiotic entry in rodents.
RESUMO
Mechanosensitive (MS) ion channels provide efficient molecular mechanism for transducing mechanical forces into intracellular ion fluxes in all kingdoms of life. The mechanosensitive channel of small conductance (MscS) was one of the best-studied MS channels and its homologs (MSL, MscS-like) were widely distributed in cell-walled organisms. However, the origin, evolution and expansion of MSL proteins in plants are still not clear. Here, we identified more than 2100 MSL proteins from 176 plants and conducted a broad-scale phylogenetic analysis. The phylogenetic tree showed that plant MSL proteins were divided into three groups (I, II and III) prior to the emergence of chlorophytae algae, consistent with their specific subcellular localization. MSL proteins were distributed unevenly into each of plant species, and four parallel expansion was identified in angiosperms. In Brassicaceae, most MSL duplicates were derived by whole-genome duplication (WGD)/segmental duplications. Finally, a hypothetical evolutionary model of MSL proteins in plants was proposed based on phylogeny. Our studies illustrate the evolutionary history of the MSL proteins and provide a guide for future functional diversity analyses of these proteins in plants.
Assuntos
Canais Iônicos , Plantas , Filogenia , Plantas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução MolecularRESUMO
In this study, keratin-associated proteins gene (KRTAP8-1) from five different sheep breeds and breed-crosses (n = 310) was genotyped using a Polymerase Chain Reaction-Single Strand confirmation Polymorphism (PCR-SSCP). Six unique genotypes were observed: AA, AC, AD, AE, DD and EE, with AA being the most common in the different breeds and crosses. Twelve wool characteristics: yield, mean staple length (MSL), bulk, mean fiber diameter (MFD), fiber diameter standard deviation (FDSD), coefficient of variation of fiber diameter (CVFD), medullation, standard deviation of medullation (MeSD), coefficient of variation of medullation (CVMed), opacity, standard deviation of opacity (OpSD), and coefficient of variation of opacity (CVOp) were measured on wool derived from the sheep. Variation in KRTAP8-1 was found to have strong association with MSL, OpSD and CVOp (p ≤ 0.027). The MSL of sheep of genotype AE was greater (p = 0.027) than for sheep of genotype AA. The OpSD of sheep of genotype AA was less (p = 0.017) than sheep with the AE genotype, and the CVOp of sheep with genotype AA was less (p = 0.018) than sheep with genotype AE. Further studies are required to confirm the role of variation in KRTAP8-1 in improving quality wool production.
Assuntos
Fibra de Lã , Lã , Ovinos/genética , Animais , Polimorfismo Genético , Queratinas/genética , GenótipoRESUMO
The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding roX2 RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.
Assuntos
Proteínas de Drosophila , RNA Longo não Codificante , Animais , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo XRESUMO
Plants sense and respond to molecular signals associated with the presence of pathogens and their virulence factors. Mechanical signals generated during pathogenic invasion may also be important, but their contributions have rarely been studied. Here, we investigate the potential role of a mechanosensitive ion channel, MscS-like (MSL)10, in defense against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. We previously showed that overexpression of MSL10-GFP, phospho-mimetic versions of MSL10, and the gain-of-function allele msl10-3G all produce dwarfing, spontaneous cell death, and the hyperaccumulation of reactive oxygen species. These phenotypes are shared by many autoimmune mutants and are frequently suppressed by growth at high temperature in those lines. We found that the same was true for all three MSL10 hypermorphs. In addition, we show that the SGT1/RAR1/HSP90 cochaperone complex was required for dwarfing and ectopic cell death, PAD4 and SID2 were partially required, and the immune regulators EDS1 and NDR1 were dispensable. All MSL10 hypermorphs exhibited reduced susceptibility to infection by P. syringae strain Pto DC3000 and Pto DC3000 expressing the avirulence genes avrRpt2 or avrRpm1 but not Pto DC3000 hrpL and showed an accelerated induction of PR1 expression compared with wild-type plants. Null msl10-1 mutants were delayed in PR1 induction and displayed modest susceptibility to infection by coronatine-deficient P. syringae pv. tomato. Finally, stomatal closure was reduced in msl10-1 loss-of-function mutants in response to P. syringae pv. tomato COR-. These data show that MSL10 modulates pathogen responses and begin to address the possibility that mechanical signals are exploited by the plant for pathogen perception.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Solanum lycopersicum/microbiologia , Proteínas de Membrana/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologiaRESUMO
The binding of the Drosophila male-specific lethal dosage compensation complex (DCC) exclusively to the male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and the ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of DCC recruitment in vitro Another conserved domain of MSL2, named Clamp-binding domain (CBD) directly interacts with the N-terminal zinc-finger domain of CLAMP. Here, we found that inactivation of CBD or CXC individually only modestly affected recruitment of the DCC to the X chromosome in males. However, combination of these two genetic lesions within the same MSL2 mutant resulted in an increased loss of DCC recruitment to the X chromosome. Thus, proper MSL2 positioning requires an interaction with either CLAMP or DNA to initiate dosage compensation in Drosophila males.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Masculino , Modelos Genéticos , Mutação/genética , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Cromossomo X/genéticaRESUMO
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Assuntos
Proteínas de Drosophila , Drosophila , Acetiltransferases/genética , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas Nucleares/genética , Cromossomo X/genéticaRESUMO
In Drosophila melanogaster, the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4ÐÐÐ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5' regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5' region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.
Assuntos
Bandeamento Cromossômico , Drosophila melanogaster/genética , Genes Essenciais , Fases de Leitura Aberta , Cromossomos Politênicos/genética , Animais , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Biologia Computacional/métodos , Proteínas de Drosophila/metabolismo , Feminino , Rearranjo Gênico , Histonas/metabolismo , Hibridização in Situ Fluorescente , Canais Iônicos/metabolismo , Masculino , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Cromossomos SexuaisRESUMO
PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Sequenciamento do ExomaRESUMO
Female-specific repression of male-specific-lethal-2 (msl2) mRNA in Drosophila melanogaster provides a paradigm for coordinated control of gene expression by RNA-binding complexes. Repression is orchestrated by Sex-lethal (SXL), which binds to the 5' and 3' untranslated regions (UTRs) of the mRNA and inhibits splicing in the nucleus and subsequent translation in the cytoplasm. Here we show that SXL ensures msl2 silencing by yet a third mechanism that involves inhibition of nucleocytoplasmic transport of msl2 mRNA. To identify SXL cofactors in msl2 regulation, we devised a two-step purification method termed GRAB (GST pull-down and RNA affinity binding) and identified Held-Out-Wings (HOW) as a component of the msl2 5' UTR-associated complex. HOW directly interacts with SXL and binds to two sequence elements in the msl2 5' UTR. Depletion of HOW reduces the capacity of SXL to repress the expression of msl2 reporters without affecting SXL-mediated regulation of splicing or translation. Instead, HOW is required for SXL to retain msl2 transcripts in the nucleus. Cooperation with SXL confers a sex-specific role to HOW. Our results uncover a novel function of SXL in nuclear mRNA retention and identify HOW as a mediator of this function.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva , Masculino , Proteínas Nucleares/genética , Ligação Proteica , Fatores de Transcrição/genéticaRESUMO
Proteins MSL1 and MSL2 form the core of the Drosophila dosage compensation complex, which specifically binds to the X chromosome of males. Phosphorylation of certain amino acid residues was previously shown to regulate MSL1 activity. In the present work, transgenic lines of Drosophila expressing mutant variants of the MSL1 protein were obtained, in which amino acids undergoing phosphorylation were replaced. As a result, it was shown that inactivation of phosphorylation sites does not affect the efficiency of specific binding of the dosage compensation complex to the X chromosome of males and its functional activity.
Assuntos
Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mutação , Animais , Fosforilação/genética , Cromossomo X/genéticaRESUMO
Hepatitis B virus (HBV) is a major risk factor for liver diseases, in which HBV covalently closed circular DNA (cccDNA), as the genomic form that templates viral transcription, plays crucial roles in sustaining viral persistence. Clinically, the excessive ethanol intake accelerates the progression of liver diseases with HBV infection. Here, we supposed that ethanol might trigger HBV cccDNA in the liver. Interestingly, we observed that the ethanol remarkably elevated the levels of HBeAg, HBsAg, HBV DNA and cccDNA in HBV-expressing hepatoma cells. Mechanically, the ethanol increased the levels of HBx and MSL2 in vivo and in HBV-expressing HepG2 cells, but not in HBV-free HepG2 cells. Moreover, the down-regulation of MSL2 by small interference RNA could block the ethanol-promoted HBV cccDNA in HepG2.2.15 cells. As a commonly administered treatment for HBV, the effect of IFNα on ethanol-triggered HBV cccDNA remains poorly understood. Strikingly, we showed that the treatment with IFN-α2b inhibited the ethanol-promoted cccDNA through depressing MSL2 in the cells. Thus, we conclude that IFN-α2b inhibits the ethanol-enriched HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx. Our finding provides new insights into the mechanism by which IFN-α2b inhibits ethanol-enhanced HBV cccDNA. Therapeutically, IFNα may contribute to the cccDNA induced by ethanol in liver.
Assuntos
DNA Circular/genética , Etanol/farmacologia , Vírus da Hepatite B/genética , Hepatite B/complicações , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Consumo de Bebidas Alcoólicas/epidemiologia , DNA Viral/genética , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/genética , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/análise , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/análise , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Interferon alfa-2 , Fígado/metabolismo , Fígado/virologia , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética , Replicação Viral/efeitos dos fármacosRESUMO
Although a growing number of mechanosensitive ion channels are being identified in plant systems, the molecular mechanisms by which they function are still under investigation. Overexpression of the mechanosensitive ion channel MSL (MscS-Like)10 fused to green fluorescent protein (GFP) triggers a number of developmental and cellular phenotypes including the induction of cell death, and this function is influenced by seven phosphorylation sites in its soluble N-terminus. Here, we show that these and other phenotypes required neither overexpression nor a tag, and could also be induced by a previously identified point mutation in the soluble C-terminus (S640L). The promotion of cell death and hyperaccumulation of H2O2 in 35S:MSL10S640L-GFP overexpression lines was suppressed by N-terminal phosphomimetic substitutions, and the soluble N- and C-terminal domains of MSL10 physically interacted. We propose a three-step model by which tension-induced conformational changes in the C-terminus could be transmitted to the N-terminus, leading to its dephosphorylation and the induction of adaptive responses. Taken together, this work expands our understanding of the molecular mechanisms of mechanotransduction in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrogênio , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismoRESUMO
INTRODUCTION: Multiple symmetric lipomatosis (MSL) (syn.: Launois-Bensaude Syndrome, benign symmetric lipomatosis) is a rare disease of fatty tissue. The pathophysiology of MSL still remains unclear, although several approaches have been described in order to understand it. Beside morphological characteristics and some molecular cell biological approaches, little is known about the histological and immunohistochemical characterization of adipose tissue from patients with MSL. METHODS: From the 45 patients with MSL in our database, 10 were included in the study. Fat tissue samples were collected from affected and unaffected areas. The forearm served as a control area as this area is not affected in MSL. The specimens were analyzed after selected stainings were taken (hematoxylin-eosin = HE, Elastica van Gieson, Ladewig, CD200, CIDEA, myf5, p107, Prdm16, Sca-1, syndecan, UCP1, MAC387, Glut4). RESULTS: In patients suffering from MSL, no macroscopic or microscopic morphological difference could be found between affected and unaffected adipose tissue in HE stainings. The majority of samples showed positivity for UCP1 (9/10 clinically affected tissues, 7/10 clinically unaffected tissues) and CD200. CONCLUSION: Marker profiles support the hypothesis that affected adipose tissue derives from brown or beige adipose tissue rather than from white fat. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Assuntos
Tecido Adiposo Bege , Lipomatose Simétrica Múltipla , Tecido Adiposo , Humanos , Lipomatose Simétrica Múltipla/cirurgiaRESUMO
Domestic sewage in rural areas is often poorly treated and discharged into waters, resulting in negative impacts on regional environment, natural resources and human health. A cost-efficient decentralized sewage treatment technology is sustainably necessary for rural areas. In this study, a modified multi-soil-layering (MSL) system was developed to specifically treat low C/N ratio domestic sewage in rural areas. The results proved the good performance of MSLs in sewage treatment under complex conditions. The highest degradation rates of COD, TP, NH4+-N, NO3--N, TN among all the devices could reach 98.29%, 100%, 76.60%, 96.15% and 69.86%, respectively. During the operation, MSL5 and MSL6 showed the best overall performance of contaminant removal. The effects of single factors and their interactions on the performance of MSL systems were further revealed through factorial analyses. In order to simulate and predict nitrogen removal of MSL system, a statistical relationship between TN removal rate and operation parameters was also successfully developed based on stepwise cluster analysis. Such modeling of nitrogen removal model can help develop an optimal strategy for the operation of MSL in treating low C/N ratio sewage from rural areas.