Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 48(13): 4152-4170, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33594473

RESUMO

The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.


Assuntos
Neoplasias Encefálicas , Técnicas Fotoacústicas , Animais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem Molecular , Tomografia Computadorizada por Raios X
2.
Small ; 15(33): e1900309, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31245925

RESUMO

Gold nanocages (AuNCs) and gold nanoclusters (AuClusters) are two classes of advantageous nanostructures with special optical properties, and many other attractive properties. Integrating them into one nanosystem may achieve greater and smarter performance. Herein, a hybrid gold nanostructure for fluorescent and optoacoustic tomography imaging, controlled release of drugs, and photothermal therapy (PTT) is demonstrated. For this nanodrug (EA-AB), an epidermal growth factor receptor (EGFR) inhibitor erlotinib (EB) is loaded into AuNCs, which are then capped and functionalized by biocompatible AuCluster@BSA (BSA = bovine serum albumin) conjugates via electrostatic interaction. Upon cell internalization, the lysosomal proteases and low pH cause the release of EB from EA-AB, and also induce fluorescence restoration of the AuCluster for imaging. Irradiation with near-infrared light further promotes the drug release and affords a PTT effect as well. The AuNC-based nanodrug is optoacoustically active, and its biodistribution and metabolic process have been successfully monitored by whole-body and 3D multispectral optoacoustic tomography imaging. Owing to the combined actions of PTT and EGFR pathway blockage, EA-AB exhibits marked tumor inhibition efficacy in vivo.


Assuntos
Receptores ErbB/antagonistas & inibidores , Ouro/química , Hipertermia Induzida/métodos , Nanoestruturas/química , Fototerapia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Xenoenxertos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Ressonância de Plasmônio de Superfície
3.
Handb Exp Pharmacol ; 251: 325-336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29896652

RESUMO

MSOT has revolutionized biomedical imaging because it allows anatomical, functional, and molecular imaging of deep tissues in vivo in an entirely noninvasive, label-free, and real-time manner. This imaging modality works by pulsing light onto tissue, triggering the production of acoustic waves, which can be collected and reconstructed to provide high-resolution images of features as deep as several centimeters below the body surface. Advances in hardware and software continue to bring MSOT closer to clinical translation. Most recently, a clinical handheld MSOT system has been used to image brown fat tissue (BAT) and its metabolic activity by directly resolving the spectral signatures of hemoglobin and lipids. This opens up new possibilities for studying BAT physiology and its role in metabolic disease without the need to inject animals or humans with contrast agents. In this chapter, we overview how MSOT works and how it has been implemented in preclinical and clinical contexts. We focus on our recent work using MSOT to image BAT in resting and activated states both in mice and humans.


Assuntos
Tecido Adiposo Marrom/metabolismo , Técnicas Fotoacústicas , Animais , Humanos , Camundongos , Tomografia
4.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694216

RESUMO

Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Obesidade/diagnóstico por imagem , Acetatos/análise , Acetatos/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fluordesoxiglucose F18/análise , Fluordesoxiglucose F18/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
5.
Small ; 14(23): e1800740, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29726109

RESUMO

Difficulty in visualizing glioma margins intraoperatively remains a major issue in the achievement of gross total tumor resection and, thus, better clinical outcome of glioblastoma (GBM) patients. Here, the potential of a new combined optical + optoacoustic imaging method for intraoperative brain tumor delineation is investigated. A strategy using a newly developed gold nanostar synthesis method, Raman reporter chemistry, and silication method to produce dual-modality contrast agents for combined surface-enhanced resonance Raman scattering (SERRS) and multispectral optoacoustic tomography (MSOT) imaging is devised. Following intravenous injection of the SERRS-MSOT-nanostars in brain tumor bearing mice, sequential MSOT imaging is performed in vivo and followed by Raman imaging. MSOT is able to accurately depict GBMs three-dimensionally with high specificity. The MSOT signal is found to correlate well with the SERRS images. Because SERRS enables uniquely sensitive high-resolution surface detection, it could represent an ideal complementary imaging modality to MSOT, which enables real-time, deep tissue imaging in 3D. This dual-modality SERRS-MSOT-nanostar contrast agent reported here is shown to enable high precision depiction of the extent of infiltrating GBMs by Raman- and MSOT imaging in a clinically relevant murine GBM model and could pave new ways for improved image-guided resection of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Análise Espectral Raman/métodos , Tomografia/métodos , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/ultraestrutura , Glioblastoma/diagnóstico , Glioblastoma/patologia , Glioblastoma/ultraestrutura , Humanos , Camundongos
6.
Toxicol Appl Pharmacol ; 332: 64-74, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28755860

RESUMO

The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Fígado/efeitos dos fármacos , Técnicas Fotoacústicas , Acetilcisteína/administração & dosagem , Alanina Transaminase/sangue , Animais , Bilirrubina/sangue , Biomarcadores/sangue , Sobrevivência Celular/efeitos dos fármacos , Glutationa/sangue , Proteína HMGB1/sangue , Fígado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue
7.
J Biophotonics ; 17(7): e202400106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719459

RESUMO

To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.


Assuntos
Técnicas Fotoacústicas , Tomografia , Humanos , Processamento de Imagem Assistida por Computador/métodos
8.
Sci Rep ; 14(1): 10597, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719924

RESUMO

Parotid lumps are a heterogeneous group of mainly benign but also malignant tumors. Preoperative imaging does not allow a differentiation between tumor types. Multispectral optoacoustic tomography (MSOT) may improve the preoperative diagnostics. In this first prospective pilot trial the ability of MSOT to discriminate between the two most frequent benign parotid tumors, pleomorphic adenoma (PA) and Warthin tumor (WT) as well as to normal parotid tissue was explored. Six wavelengths (700, 730, 760, 800, 850, 900 nm) and the parameters deoxygenated (HbR), oxygenated (HbO2), total hemoglobin (HbT), and saturation of hemoglobin (sO2) were analyzed. Ten patients with PA and fourteen with WT were included (12/12 female/male; median age: 51 years). For PA, the mean values for all measured wave lengths as well as for the hemoglobin parameters were different for the tumors compared to the healthy parotid (all p < 0.05). The mean MSOT parameters were all significantly higher (all p < 0.05) in the WT compared to healthy parotid gland except for HbT and sO2. Comparing both tumors directly, the mean values of MSOT parameters were not different between PA and WT (all p > 0.05). Differences were seen for the maximal MSOT parameters. The maximal tumor values for 900 nm, HbR, HbT, and sO2 were lower in PA than in WT (all p < 0.05). This preliminary MSOT parotid tumor imaging study showed clear differences for PA or WT compared to healthy parotid tissue. Some MSOT characteristics of PA and WT were different but needed to be explored in larger studies.


Assuntos
Neoplasias Parotídeas , Técnicas Fotoacústicas , Humanos , Feminino , Neoplasias Parotídeas/diagnóstico por imagem , Neoplasias Parotídeas/patologia , Pessoa de Meia-Idade , Masculino , Projetos Piloto , Estudos Prospectivos , Técnicas Fotoacústicas/métodos , Adulto , Idoso , Hemoglobinas/análise , Hemoglobinas/metabolismo , Adenolinfoma/diagnóstico por imagem , Adenolinfoma/patologia , Adenoma Pleomorfo/diagnóstico por imagem , Adenoma Pleomorfo/patologia , Tomografia/métodos , Glândula Parótida/diagnóstico por imagem , Glândula Parótida/patologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38593207

RESUMO

Wounds infected with bacteria, if left untreated, have the potential to escalate into life-threatening conditions, such as sepsis, which is characterized by widespread inflammation and organ damage. A comprehensive approach to treating bacterial-infected wounds, encompassing the control of bacterial infection, biofilm eradication, and inflammation regulation, holds significant importance. Herein, a microneedle (MN) patch (FM@ST MN) has been developed, with silk fibroin (SF) and tannic acid-based hydrogel serving as the matrix. Encapsulated within the MNs are the AIEgen-based activatable probe (FQ-H2O2) and the NLRP3 inhibitor MCC950, serving as the optical reporter/antibacterial agent and the inflammation regulator, respectively. When applied onto bacterial-infected wounds, the MNs in FM@ST MN penetrate bacterial biofilms and gradually degrade, releasing FQ-H2O2 and MCC950. The released FQ-H2O2 responds to endogenously overexpressed reactive oxygen species (H2O2) at the wound site, generating a chromophore FQ-OH which emits noticeable NIR-II fluorescence and optoacoustic signals, enabling real-time imaging for outcome monitoring; and this chromophore also exhibits potent antibacterial capability due to its dual positive charges and shows negligible antibacterial resistance. However, the NLRP3 inhibitor MCC950, upon release, suppresses the activation of NLRP3 inflammasomes, thereby mitigating the inflammation triggered by bacterial infections and facilitating wound healing. Furthermore, SF in FM@ST MN aids in tissue repair and regeneration by promoting the proliferation of epidermal cells and fibroblasts and collagen synthesis. This MN system, free from antibiotics, holds promise as a solution for treating and monitoring bacterially infected wounds without the associated risk of antimicrobial resistance.

10.
Front Cardiovasc Med ; 10: 1210032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028502

RESUMO

Imaging plays a critical role in exploring the pathophysiology and enabling the diagnostics and therapy assessment in carotid artery disease. Ultrasonography, computed tomography, magnetic resonance imaging and nuclear medicine techniques have been used to extract of known characteristics of plaque vulnerability, such as inflammation, intraplaque hemorrhage and high lipid content. Despite the plethora of available techniques, there is still a need for new modalities to better characterize the plaque and provide novel biomarkers that might help to detect the vulnerable plaque early enough and before a stroke occurs. Optoacoustics, by providing a multiscale characterization of the morphology and pathophysiology of the plaque could offer such an option. By visualizing endogenous (e.g., hemoglobin, lipids) and exogenous (e.g., injected dyes) chromophores, optoacoustic technologies have shown great capability in imaging lipids, hemoglobin and inflammation in different applications and settings. Herein, we provide an overview of the main optoacoustic systems and scales of detail that enable imaging of carotid plaques in vitro, in small animals and humans. Finally, we discuss the limitations of this novel set of techniques while investigating their potential to enable a deeper understanding of carotid plaque pathophysiology and possibly improve the diagnostics in future patients with carotid artery disease.

11.
Photoacoustics ; 29: 100454, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36794122

RESUMO

Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.

12.
Photoacoustics ; 32: 100532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645255

RESUMO

Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.

13.
Photoacoustics ; 30: 100468, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36950518

RESUMO

Imaging skeletal muscle function and metabolism, as reported by local hemodynamics and oxygen kinetics, can elucidate muscle performance, severity of an underlying disease or outcome of a treatment. Herein, we used multispectral optoacoustic tomography (MSOT) to image hemodynamics and oxygen kinetics within muscle during exercise. Four healthy volunteers underwent three different hand-grip exercise challenges (60s isometric, 120s intermittent isometric and 60s isotonic). During isometric contraction, MSOT showed a decrease of HbO2, Hb and total blood volume (TBV), followed by a prominent increase after the end of contraction. Corresponding hemodynamic behaviors were recorded during the intermittent isometric and isotonic exercises. A more detailed analysis of MSOT readouts revealed insights into arteriovenous oxygen differences and muscle oxygen consumption during all exercise schemes. These results demonstrate an excellent capability of visualizing both circulatory function and oxygen metabolism within skeletal muscle under exercise, with great potential implications for muscle research, including relevant disease diagnostics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35822699

RESUMO

The development of nanotheranostics for precision imaging-guided regulated cell death-mediated synergistic tumor therapy is still challenging. Herein, a novel multifunctional nanotheranostic agent, iRGD-coated maleimide-poly(ethylene glycol)-poly(lactic acid/glycolic acid)-encapsulated hydrophobic gold nanocages (AuNCs) and hydrophilic epigallocatechin gallate (EGCG) (PAuE) is developed for multispectral optoacoustic tomography (MSOT)-guided photothermal therapy (PTT) and chemotherapy. The portions of necroptotic and apoptotic tumor cells were 52.9 and 5.4%, respectively, at 6 h post-incubation after the AuNC-induced mild PTT treatment, whereas they became 14.0 and 46.1% after 24 h, suggesting that the switch of the cell death pathway is a time-dependent process. Mild PTT facilitated the release of EGCG which induces the downregulation of hypoxia-inducible factor-1 (HIF-1α) expression to enhance apoptosis at a later stage, realizing a remarkable tumor growth inhibition in vivo. Moreover, RNA sequence analyses provided insights into the significant changes in genes related to the cross-talk between necroptosis and apoptosis pathways via PAuE upon laser irradiation. In addition, the biodistribution and metabolic pathways of PAuE have been successfully revealed by 3D MSOT. Taken together, this strategy of first combination of EGCG and AuNC-based photothermal agent via triggering necroptosis/apoptosis to downregulate HIF-1α expression in a tumor environment provides a new insight into anti-cancer therapy.

15.
Photoacoustics ; 26: 100361, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35541023

RESUMO

Although multispectral optoacoustic tomography (MSOT) significantly evolved over the last several years, there is a lack of quantitative methods for analysing this type of image data. Current analytical methods characterise the MSOT signal in manually defined regions of interest outlining selected tissue areas. These methods demand expert knowledge of the sample anatomy, are time consuming, highly subjective and prone to user bias. Here we present our fully automated open-source MSOT cluster analysis toolkit Mcat that was designed to overcome these shortcomings. It employs a deep learning-based approach for initial image segmentation followed by unsupervised machine learning to identify regions of similar signal kinetics. It provides an objective and automated approach to quantify the pharmacokinetics and extract the biodistribution of biomarkers from MSOT data. We exemplify our generally applicable analysis method by quantifying liver function in a preclinical sepsis model whilst highlighting the advantages of our new approach compared to the severe limitations of existing analysis procedures.

16.
Photoacoustics ; 26: 100343, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35308306

RESUMO

Background: Since the initial breast transillumination almost a century ago, breast cancer imaging using light has been considered in different implementations aiming to improve diagnostics, minimize the number of available biopsies, or monitor treatment. However, due to strong photon scattering, conventional optical imaging yields low resolution images, challenging quantification and interpretation. Optoacoustic imaging addresses the scattering limitation and yields high-resolution visualization of optical contrast, offering great potential value for breast cancer imaging. Nevertheless, the image quality of experimental systems remains limited due to a number of factors, including signal attenuation with depth and partial view angle and motion effects, particularly in multi-wavelength measurements. Methods: We developed data analytics methods to improve the accuracy of handheld optoacoustic breast cancer imaging, yielding second-generation optoacoustic imaging performance operating in tandem with ultrasonography. Results: We produced the most advanced images yet with handheld optoacoustic examinations of the human breast and breast cancer, in terms of resolution and contrast. Using these advances, we examined optoacoustic markers of malignancy, including vasculature abnormalities, hypoxia, and inflammation, on images obtained from breast cancer patients. Conclusions: We achieved a new level of quality for optoacoustic images from a handheld examination of the human breast, advancing the diagnostic and theranostic potential of the hybrid optoacoustic-ultrasound (OPUS) examination over routine ultrasonography.

17.
Photoacoustics ; 21: 100220, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33318928

RESUMO

Photo-or optoacoustic imaging (OAI) allows quantitative imaging of target tissues. Using multi-wavelength illumination with subsequent ultrasound detection, it may visualize a variety of different chromophores at centimeter depth. Despite its non-invasive, label-free advantages, the precision of repeated measurements for clinical applications is still elusive. We present a multilayer analysis of n = 1920 imaging datasets obtained from a prospective clinical trial (NCT03979157) in n = 10 healthy adult volunteers. All datasets were analyzed for 13 single wavelengths (SWL) between 660 nm-1210 nm and five MSOT-parameters (deoxygenated/oxygenated/total hemoglobin, collagen and lipid) by a semi-automated batch mode software. Intraclass correlation coefficients (ICC) were good to excellent for intrarater (SWL: 0.82-0.92; MSOT-parameter: 0.72-0.92) and interrater reproducibility (SWL: 0.79-0.87; MSOT-parameter: 0.78-0.86), with the exception for MSOT-parameter lipid (interrater ICC: 0.56). Results were stable over time, but exercise-related effects as well as inter-and intramuscular variability were observed. The findings of this study provide a framework for further clinical OAI implementation.

18.
Photoacoustics ; 22: 100263, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948433

RESUMO

Contrast enhancement in optoacoustic (photoacoustic) imaging can be achieved with agents that exhibit high absorption cross-sections, high photostability, low quantum yield, low toxicity, and preferential bio-distribution and clearance profiles. Based on advantageous photophysical properties of croconaine dyes, we explored croconaine-based nanoparticles (CR780RGD-NPs) as highly efficient contrast agents for targeted optoacoustic imaging of challenging preclinical tumor targets. Initial characterization of the CR780 dye was followed by modifications using polyethylene glycol and the cancer-targeting c(RGDyC) peptide, resulting in self-assembled ultrasmall particles with long circulation time and active tumor targeting. Preferential bio-distribution was demonstrated in orthotopic mouse brain tumor models by multispectral optoacoustic tomography (MSOT) imaging and histological analysis. Our findings showcase particle accumulation in brain tumors with sustainable strong optoacoustic signals and minimal toxic side effects. This work points to CR780RGD-NPs as a promising optoacoustic contrast agent for potential use in the diagnosis and image-guided resection of brain tumors.

19.
J Nucl Med ; 62(6): 839-848, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33097631

RESUMO

Limitations in current imaging tools have long challenged the imaging of small pancreatic islets in animal models. Here, we report the first development and in vivo validation testing of a broad-spectrum and high-absorbance near-infrared optoacoustic contrast agent, E4x12-Cy7. Our near-infrared tracer is based on the amino acid sequence of exendin-4 and targets the glucagon-like peptide-1 receptor (GLP-1R). Cell assays confirmed that E4x12-Cy7 has a high-binding affinity (dissociation constant, Kd, 4.6 ± 0.8 nM). Using the multispectral optoacoustic tomography, we imaged E4x12-Cy7 and optoacoustically visualized ß-cell insulinoma xenografts in vivo for the first time. In the future, similar optoacoustic tracers that are specific for ß-cells and combines optoacoustic and fluorescence imaging modalities could prove to be important tools for monitoring the pancreas for the progression of diabetes.


Assuntos
Exenatida/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Raios Infravermelhos , Técnicas Fotoacústicas/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Exenatida/farmacocinética , Feminino , Insulinoma/metabolismo , Insulinoma/patologia , Camundongos , Distribuição Tecidual
20.
Biomedicines ; 9(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829925

RESUMO

Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA