Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Bot ; 75(11): 3322-3336, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38506421

RESUMO

Modern tomatoes produce colorful mature fruits, but many wild tomato ancestors form green or gray green ripe fruits. Here, tomato cultivar 'Lvbaoshi' (LBS) that produces green ripe fruits was found to contain three recessive loci responsible for fruit development. The colorless peel of LBS fruits was caused by a 603 bp deletion in the promoter of SlMYB12. The candidate genes of the remaining two loci were identified as STAY-GREEN 1 (SlSGR1) and PHYTOENE SYNTHASE 1 (SlPSY1). SGR1 and PSY1 co-suppression by RNAi converted the pink fruits into green ripe fruits in transgenic plants. An amino acid change in PSY1 and a deletion in the promoter of SGR1 were also identified in several wild tomatoes bearing green or gray ripe fruits. Overexpression of PSY1 from green ripe fruit wild tomatoes in LBS plants could only partially rescue the green ripe fruit phenotype of LBS, and transgenic lines expressing ProSGR1::SGR1 from Solanum pennellii also failed to convert purple-flesh into red-flesh fruits. This work uncovers a novel regulatory mechanism by which SlMYB12, SlPSY1, and SlSGR1 control fruit color in cultivated and some wild tomato species.


Assuntos
Alquil e Aril Transferases , Frutas , Geranil-Geranildifosfato Geranil-Geraniltransferase , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Mutação , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Planta ; 256(2): 44, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857143

RESUMO

MAIN CONCLUSION: Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proantocianidinas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação , Proantocianidinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Metab Eng ; 65: 185-196, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33242649

RESUMO

L-DOPA, also known as Levodopa or L-3,4-dihydroxyphenylalanine, is a non-standard amino acid, and the gold standard drug for the treatment for Parkinson's Disease (PD). Recently, a gene encoding the enzyme that is responsible for its synthesis, as a precursor of the coloured pigment group betalains, was identified in beetroot, BvCYP76AD6. We have engineered tomato fruit enriched in L-DOPA through overexpression of BvCYP76AD6 in a fruit specific manner. Analysis of the transgenic fruit revealed the feasibility of accumulating L-DOPA in a non-naturally betalain-producing plant. Fruit accumulating L-DOPA also showed major effects on the fruit metabolome. Some of these changes included elevation of amino acids levels, changes in the levels of intermediates of the TCA and glycolysis pathways and reductions in the levels of phenolic compounds and nitrogen-containing specialised metabolites. Furthermore, we were able to increase the L-DOPA levels further by elevating the expression of the metabolic master regulator, MYB12, specifically in tomato fruit, together with BvCYP76AD6. Our study elucidated new roles for L-DOPA in plants, because it impacted fruit quality parameters including antioxidant capacity and firmness. The L-DOPA levels achieved in tomato fruit were comparable to the levels in other non-seed organs of L-DOPA - accumulating plants, offering an opportunity to develop new biological sources of L-DOPA by widening the repertoire of L-DOPA-accumulating plants. These tomato fruit could be used as an alternative source of this important pharmaceutical.


Assuntos
Levodopa , Solanum lycopersicum , Betalaínas , Frutas/genética , Solanum lycopersicum/genética , Engenharia Metabólica
4.
Plant Cell Environ ; 44(3): 775-791, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33225450

RESUMO

MYB12 promotes flavonol biosynthesis in plants by targeting several early biosynthesis genes (EBGs) of this pathway. The transcriptions of these EBGs are also induced by sucrose signal. However, whether MYB12 is activated by sucrose signal and what the other roles MYB12 has in regulating plant metabolism are poorly understood. In this study, two NtMYB12 genes were cloned from Nicotiana tabacum. Both NtMYB12a and NtMYB12b are involved in regulating flavonoids biosynthesis in tobacco. NtMYB12a is further shown to inhibit the accumulation of fatty acid (FA) in tobacco leaves and seeds. Post-translational activation and chromatin immunoprecipitation assays demonstrate that NtMYB12a directly promotes the transcriptions of NtLOX6, NtLOX5, NtSFAR4 and NtGDSL2, which encode lipoxygenase (LOX) or SFAR enzymes catalyzing the degradation of FA. NtLOX6 and NtLOX5 are shown to prevent the accumulation of FA in the mature seeds and significantly reduced the percentage of polyunsaturated fatty acids (PUFAs) in tobacco. Sucrose stimulates the transcription of NtMYB12a, and loss function of NtMYB12a partially suppresses the decrease of FA content in tobacco seedlings caused by sucrose treatment. The regulation of sucrose on the expression of NtLOX6 and NtGDSL2 genes is mediated by NtMYB12a, whereas those of NtLOX5 and NtSFAR4 genes are independent of sucrose.


Assuntos
Ácidos Graxos/metabolismo , Lipoxigenase/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Clonagem Molecular , Flavonoides/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/enzimologia , Nicotiana/genética , Fatores de Transcrição/genética
5.
BMC Plant Biol ; 19(1): 85, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791875

RESUMO

BACKGROUND: As a class of natural antioxidants in plants, fruit flavonol metabolites are beneficial to human health. However, the regulatory networks for flavonol biosynthesis in most fruits are largely unknown. Previously, we reported a spontaneous pear bud sport 'Red Zaosu' (Pyrus bretschneideri Rehd.) with a high flavonoid content in its fruit. The identification of the flavonol biosynthetic regulatory network in this mutant pear fruit is crucial for elucidating the flavonol biosynthetic mechanism in fruit. RESULTS: Here, we demonstrated the PbMYB12b positively regulated flavonols biosynthesis in 'Red Zaosu' fruit. Initially, we investigated the accumulation patterns of four major quercetin glycosides and two major isorhamnetin glycosides in the fruit of 'Red Zaosu' and its wild-type 'Zaosu'. A PRODUCTION OF FLAVONOL GLYCOSIDES (PFG)-type MYB transcription factor PbMYB12b was also screened for because of its correlation with flavonol accumulation in pear fruit. The biofunction of PbMYB12b was verified by transient overexpression and RNAi assays in pear fruit and young leaves. Overexpression of PbMYB12b enhanced the biosynthesis of quercetin glycosides and isorhamnetin glycosides by positively regulating a general flavonoids biosynthesis gene PbCHSb and a flavonol biosynthesis gene PbFLS. This finding was also supported by dual-luciferase transient expression assay and transient ß-glucuronidase (GUS) reporter assay. CONCLUSIONS: Our study indicated that PbMYB12b positively regulated flavonol biosynthesis, including four major quercetin glycosides and two major isorhamnetin glycosides, by promoting the expression of PbCHSb and PbFLS in pear fruit.


Assuntos
Flavonoides/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/fisiologia , Pyrus/metabolismo , Fatores de Transcrição/fisiologia , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética
6.
Z Naturforsch C J Biosci ; 72(7-8): 251-257, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28284041

RESUMO

The Arabidopsis thaliana R2R3-MYB transcription factor MYB12 is a light-inducible, flavonol-specific activator of flavonoid biosynthesis. The transactivation activity of the AtMYB12 protein was analyzed using a C-terminal deletion series in a transient A. thaliana protoplast assay with the goal of mapping the activation domain (AD). Although the deletion of the last 46 C-terminal amino acids did not affect the activation capacity, the deletion of the last 98 amino acids almost totally abolished transactivation of two different target promoters. A domain swap experiment using the yeast GAL4 DNA-binding domain revealed that the region from positions 282 to 328 of AtMYB12 was sufficient for transactivation. In contrast to the R2R3-MYB ADs known thus far, that of AtMYB12 is not located at the rearmost C-terminal end of the protein. The AtMYB12 AD is conserved in other experimentally proven R2R3-MYB flavonol regulators from different species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Ativação Transcricional , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Flavonoides/biossíntese , Glucuronidase/genética , Glucuronidase/metabolismo , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Protoplastos/metabolismo , Plântula/genética , Plântula/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
7.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071576

RESUMO

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

8.
Mol Breed ; 33: 503-518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24532977

RESUMO

Untargeted LCMS profiling of semi-polar metabolites followed by metabolite quantitative trait locus (mQTL) analysis was performed in ripe pepper fruits of 113 F2 plants derived from a cross between Capsicum annuum AC1979 (no. 19) and Capsicum chinense No. 4661 Selection (no. 18). The parental accessions were selected based on their variation in fruit morphological characteristics and fruit content of some target phytonutrients. Clear segregation of fruit colour and fruit metabolite profiles was observed in the F2 population. The F2 plants formed three clusters based on their metabolite profiles. Of the total of 542 metabolites, 52 could be annotated, including a range of flavonoids, such as flavone C-glycosides, flavonol O-glycosides and naringenin chalcone, as well as several phenylpropanoids, a capsaicin analogue, fatty acid derivatives and amino acid derivatives. Interval mapping revealed 279 mQTLs in total. Two mQTL hotspots were found on chromosome 9. These two chromosomal regions regulated the relative levels of 35 and 103 metabolites, respectively. Analysis also revealed an mQTL for a capsaicin analogue, located on chromosome 7. Confirmation of flavonoid mQTLs using a set of six flavonoid candidate gene markers and their corresponding expression data (expression QTLs) indicated the Ca-MYB12 transcription factor gene on chromosome 1 and the gene encoding flavone synthase (FS-2) on chromosome 6 as likely causative genes determining the variation in naringenin chalcone and flavone C-glycosides, respectively, in this population. The combination of large-scale metabolite profiling and QTL analysis provided valuable insight into the genomic regions and genes important for the production of (secondary) metabolites in pepper fruit. This will impact breeding strategies aimed at optimising the content of specific metabolites in pepper fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA