Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555229

RESUMO

In this study, we aimed to investigate whether short-term and low-dose treatment with hydroxychloroquine (HCQ), an antimalarial drug, can modulate heart function in a preclinical model of dilated cardiomyopathy (DCM) expressing the D94A mutation in cardiac myosin regulatory light chain (RLC) compared with healthy non-transgenic (NTg) littermates. Increased interest in HCQ came with the COVID-19 pandemic, but the risk of cardiotoxic side effects of HCQ raised concerns, especially in patients with an underlying heart condition, e.g., cardiomyopathy. Effects of HCQ treatment vs. placebo (H2O), administered in Tg-D94A vs. NTg mice over one month, were studied by echocardiography and muscle contractile mechanics. Global longitudinal strain analysis showed the HCQ-mediated improvement in heart performance in DCM mice. At the molecular level, HCQ promoted the switch from myosin's super-relaxed (SRX) to disordered relaxed (DRX) state in DCM-D94A hearts. This result indicated more myosin cross-bridges exiting a hypocontractile SRX-OFF state and assuming the DRX-ON state, thus potentially enhancing myosin motor function in DCM mice. This bottom-up investigation of the pharmacological use of HCQ at the level of myosin molecules, muscle fibers, and whole hearts provides novel insights into mechanisms by which HCQ therapy mitigates some abnormal phenotypes in DCM-D94A mice and causes no harm in healthy NTg hearts.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Camundongos , Humanos , Animais , Camundongos Transgênicos , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Pandemias , Tratamento Farmacológico da COVID-19 , Mutação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fenótipo , Contração Miocárdica
2.
Proc Natl Acad Sci U S A ; 115(10): E2338-E2347, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463717

RESUMO

Dilated cardiomyopathy (DCM) is a devastating heart disease that affects about 1 million people in the United States, but the underlying mechanisms remain poorly understood. In this study, we aimed to determine the biomechanical and structural causes of DCM in transgenic mice carrying a novel mutation in the MYL2 gene, encoding the cardiac myosin regulatory light chain. Transgenic D94A (aspartic acid-to-alanine) mice were created and investigated by echocardiography and invasive hemodynamic and molecular structural and functional assessments. Consistent with the DCM phenotype, a significant reduction of the ejection fraction (EF) was observed in ∼5- and ∼12-mo-old male and female D94A lines compared with respective WT controls. Younger male D94A mice showed a more pronounced left ventricular (LV) chamber dilation compared with female counterparts, but both sexes of D94A lines developed DCM by 12 mo of age. The hypocontractile activity of D94A myosin motors resulted in the rightward shift of the force-pCa dependence and decreased actin-activated myosin ATPase activity. Consistent with a decreased Ca2+ sensitivity of contractile force, a small-angle X-ray diffraction study, performed in D94A fibers at submaximal Ca2+ concentrations, revealed repositioning of the D94A cross-bridge mass toward the thick-filament backbone supporting the hypocontractile state of D94A myosin motors. Our data suggest that structural perturbations at the level of sarcomeres result in aberrant cardiomyocyte cytoarchitecture and lead to LV chamber dilation and decreased EF, manifesting in systolic dysfunction of D94A hearts. The D94A-induced development of DCM in mice closely follows the clinical phenotype and suggests that MYL2 may serve as a new therapeutic target for dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cadeias Leves de Miosina/metabolismo , Sarcômeros/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Sarcômeros/genética
3.
Mol Genet Genomics ; 294(5): 1241-1249, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31104103

RESUMO

Hypertrophic cardiomyopathy (HCM), a major cause of sudden death in youth, is largely affected by genetic factors. The R58Q mutation in the MYL2 gene was identified in some HCM patients and was considered as a deleterious HCM mutation. However, the passing of R58Q between generations along with HCM symptoms was observed only in small families with only two or three members; thus, whether R58Q is as deleterious as previously claimed remains questionable. Here, we reported a large four-generation Chinese family, and found that R58Q existed in all six members with HCM and two healthy juveniles who had not yet developed HCM yet, and presumably in three deceased members who suffered from sudden death. In addition, we also found that compared with other mutations, R58Q had a more severe effect on the cellular level. Therefore, we confirmed that R58Q could be passed from generation to generation along with HCM symptoms and that it was indeed a deleterious mutation for HCM. However, further study is needed to identify additional factors that may determine the various symptoms shown in different family members within the same family.


Assuntos
Povo Asiático/genética , Cardiomiopatia Hipertrófica/genética , Mutação/genética , Cadeias Leves de Miosina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
4.
Cardiology ; 141(3): 156-166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30605904

RESUMO

BACKGROUND: Myosin is a hexameric contractile protein composed of 2 heavy chains associated with 4 light chains of 2 distinct classes - 2 regulatory light chains (MYL2) and 2 essential light chains (MYL3). The myosin light chains stabilize the long alpha helical neck of the myosin head and regulate the myosin ATPase activities. OBJECTIVES: Mutations in MYL2 and MYL3 are reported to be associated with cardiomyopathies. However, there is no study available on these genes in Indian cardiomyopathies, and therefore we planned to study them. METHOD: For the first time we sequenced MYL2 and MYL3 genes in a total of 248 clinically well-characterized cardiomyopathies consisting of 101 hypertrophic and 147 dilated cases along with 207 healthy controls from south India. RESULTS: Our study revealed a total of 10 variations - 7 in MYL2 and 3 in MYL3, of which 3 are novel variations observed exclusively in cases. However, the 15 causative missense mutations previously reported are totally absent in our study, which showed that the sequences of MYL2 and MYL3 are highly conserved in Indian cases/controls. CONCLUSIONS: MYL2 and MYL3 mutations are rare and the least cause of cardiomyopathies in Indians.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Mutação de Sentido Incorreto , Cadeias Leves de Miosina/genética , Adulto , Estudos de Casos e Controles , Humanos , Índia , Pessoa de Meia-Idade , Linhagem , Fenótipo
5.
Genes (Basel) ; 14(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672873

RESUMO

The Duroc pig originated in the United States and is a typical lean-meat pig. The breed grows fast, and the body size is large, but the meat quality is poor. The Luchuan pig is one of eight excellent local breeds in China; it has tender meat but is small in size. To study the factors that determine growth, we selected the longissimus dorsi muscle of Luchuan and Duroc pigs for transcriptome sequencing. The results of the transcriptome showed that 3682 genes were differentially expressed (DEGs) in the longissimus dorsi muscle of Duroc and Luchuan pigs. We screened out genes related to muscle development and selected the MYL2 (Myosin light chain-2) gene to perform preliminary research. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the Akt/FoxO signaling pathway, fatty acid metabolism, arachidonic acid metabolism and glycine, serine and threonine metabolism. Such pathways contributed to skeletal muscle growth, fatty acid metabolism and intramuscular fat deposition. These results provide insight into the mechanisms underlying the formation of skeletal muscle and provide candidate genes to improve growth traits, as well as contribute to improving the growth and development traits of pigs through molecular breeding.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Suínos/genética , Animais , Perfilação da Expressão Gênica/métodos , Melhoramento Vegetal , Músculo Esquelético/metabolismo , Ácidos Graxos/metabolismo
6.
Methods Mol Biol ; 2573: 89-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040589

RESUMO

Adeno-associated virus serotype 9 (AAV9) is often used in heart research involving gene delivery due to its cardiotropism, high transduction efficiency, and little to no pathogenicity, making it highly applicable for gene manipulation, in vivo. However, current AAV9 technology is limited by the lack of strains that can selectively express and elucidate gene function in an atrial- and ventricular-specific manner. In fact, study of gene function in cardiac atria has been limited due to the lack of an appropriate tool to study atrial gene expression in vivo, hindering progress in the study of atrial-specific diseases such as atrial fibrillation, the most common cardiac arrhythmia in the USA.This chapter describes the method for the design and production of such chamber-specific AAV9 vectors, with the use of Nppa and Myl2 promoters to enhance atrial- and ventricular-specific expression. While several gene promoter candidates were considered and tested, Nppa and Myl2 were selected for use here because of their clearly defined regulatory elements that confer cardiac chamber-specific expression. Accordingly, Nppa (-425/+25) and Myl2 (-226/+36) promoter fragments are inserted into AAV9 vectors. The atrial- and ventricular-specific expression conferred by these new recombinant AAV9 was confirmed in a double-fluorescent Cre-dependent reporter mouse model. At only 450 and 262 base pairs of Nppa and Myl2 promoters, respectively, these AAV9 that drive chamber-specific AAV9 transgene expression address two major limitations of AAV9 technology, i.e., achieving chamber-specificity while maximizing space in the AAV genome for insertion of larger transgenes.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Átrios do Coração/metabolismo , Camundongos , Sorogrupo
7.
Mol Genet Genomic Med ; 10(10): e2041, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993536

RESUMO

BACKGROUND: Myosin family genes, including those encoding myosin heavy chain 6, myosin heavy chain 7, myosin light chain 3, and myosin light chain 2 (MYL2), are important genetic factors in congenital heart disease (CHD). However, how these genes contribute to CHD in the Han Chinese population remains unclear. METHODS: We sequenced myosin family genes in a Han Chinese cohort comprising 412 CHD patients and 213 matched controls in the present study. A zebrafish model was used to evaluate the pathogenicity of rare mutations in MYL2. RESULTS: We identified 30 known mutations and 12 novel mutations. Furthermore, the contributions of two novel mutations, MYL2 p.Ile158Thr and p.Val146Met, to CHD were analyzed. The p.Ile158Thr mutation increased MYL2 expression. In zebrafish embryos, injection of myl2b-targeting morpholinos led to aberrant cardiac structures, an effect that was reversed by expression of wild-type MYL2 but not MYL2 p.Ile158Thr and pVal146Met. CONCLUSIONS: Overall, our findings suggest that MYL2 p.Ile158Thr and p.Val146Met contribute to the etiology of CHD. The results also indicate the importance of MYL2 in heart formation.


Assuntos
Cardiopatias Congênitas , Cadeias Leves de Miosina , Animais , China , Cardiopatias Congênitas/genética , Morfolinos , Cadeias Pesadas de Miosina , Cadeias Leves de Miosina/genética , Peixe-Zebra/genética
8.
J Invest Surg ; 34(12): 1297-1303, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32727232

RESUMO

BACKGROUND: Perioperative neurocognitive disorders (PND) resulting from cardiac surgery is a complication with high morbidity and mortality. However, the pathogenesis is unknown. METHODS: For the sake of investigating the risk factors and mechanism of PND, we collected the characteristics and neurological scores of patients undergoing cardiac surgery in the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University and Affiliated Hospital of Southwest Medical University from Jan 1, 2016 to Dec 11, 2018. RESULTS: We found that age and left atrial thrombus are independent risk factors for PND after cardiac surgery. Furthermore, the serum of 29 patients was collected on the 7th day after cardiac surgery for detecting the expression of lncRNA-MYL2-2 and miR-124-3p. Increased lncRNA-MYL2-2 and decreased miR-124-3p in serum were associated with the decline of patients' cognition. CONCLUSIONS: LncRNA-MYL2-2 and miRNA-124-3p may jointly participate in the occurrence and development of PND after cardiac surgery. These important findings are advantaged to further understand the pathogenesis of PND and prevent it, provide new biomarkers for the diagnosis and monitoring of PND.


Assuntos
Procedimentos Cirúrgicos Cardíacos , MicroRNAs , Transtornos Neurocognitivos , RNA Longo não Codificante , Biomarcadores , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , MicroRNAs/genética , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/epidemiologia , Transtornos Neurocognitivos/etiologia , RNA Longo não Codificante/genética
9.
J Cardiovasc Transl Res ; 12(5): 394-403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30796699

RESUMO

Hypertrophic cardiomyopathy (HCM), characterized by unexplained left ventricular hypertrophy, is one of the most common heritable cardiovascular diseases. The myosin regulatory light chain (MYL2) mutation R58Q has been associated with severe cardiac hypertrophy and sudden cardiac death (SCD). Herein, we provide the first patient-specific, induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of MYL2-R58Q. The MYL2-R58Q iPSC-CMs were nearly 30% larger than control iPSC-CMs at day 60. The percentage of myofibrillar disarray and cells with irregular beating in MYL2-R58Q iPSC-CMs was significantly higher than that in control cells. MYL2-R58Q iPSC-CMs had significantly decreased peak ΔF/F0 of calcium transients and delayed decay time than controls. Additionally, the L-type Ca2+ channel (LTCC) (ICa,L) density at 0 mV was reduced significantly by 45.3%. Overall, the MYL2-R58Q iPSC-CMs recapitulated the HCM phenotype by exhibiting hypertrophy, myofibrillar disarray, increased irregular beating, decreased [Ca2+]i transients, and unexpectedly a nearly 50% reduction in LTCC peak current.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Hipertrófica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Tamanho Celular , Células Cultivadas , Feminino , Predisposição Genética para Doença , Frequência Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Potenciais da Membrana , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Miofibrilas/ultraestrutura , Fenótipo
10.
Gene ; 569(1): 14-20, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26074085

RESUMO

Myosin light chain-2 (MYL2, also called MLC-2) is an ~19kDa sarcomeric protein that belongs to the EF-hand calcium binding protein superfamily and exists as three major isoforms encoded by three distinct genes in mammalian striated muscle. Each of the three different MLC-2 genes (MLC-2f; fast twitch skeletal isoform, MLC-2v; cardiac ventricular and slow twitch skeletal isoform, MLC-2a; cardiac atrial isoform) has a distinct developmental expression pattern in mammals. Genetic loss-of-function studies in mice demonstrated an essential role for cardiac isoforms of MLC-2, MLC-2v and MLC-2a, in cardiac contractile function during early embryogenesis. In the adult heart, MLC-2v function is regulated by phosphorylation, which displays a specific 1`expression pattern (high in epicardium and low in endocardium) across the heart. These data along with new data from computational models, genetic mouse models, and human studies have revealed a direct role for MLC-2v phosphorylation in cross-bridge cycling kinetics, calcium-dependent cardiac muscle contraction, cardiac torsion, cardiac function and various cardiac diseases. This review focuses on the regulatory functions of MLC-2 in the embryonic and adult heart, with an emphasis on phosphorylation-driven actions of MLC-2v in adult cardiac muscle, which provide new insights into mechanisms regulating myosin cycling kinetics and human cardiac diseases.


Assuntos
Miosinas Cardíacas/genética , Ventrículos do Coração/fisiopatologia , Coração/fisiopatologia , Doenças Musculares/genética , Cadeias Leves de Miosina/genética , Animais , Miosinas Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Camundongos , Doenças Musculares/fisiopatologia , Miocárdio/patologia , Cadeias Leves de Miosina/metabolismo , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA