Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Genes Dev ; 35(17-18): 1209-1228, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34413137

RESUMO

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Assuntos
Desenvolvimento Muscular , Proteína MyoD , Animais , Diferenciação Celular/genética , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Células-Tronco/metabolismo
2.
Mol Cell ; 76(3): 453-472.e8, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31519520

RESUMO

MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.


Assuntos
Transdiferenciação Celular , Reprogramação Celular , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Fibroblastos/metabolismo , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Transdiferenciação Celular/genética , Cromatina/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Conformação de Ácido Nucleico , Fenótipo , Ligação Proteica , Relação Estrutura-Atividade , Transcrição Gênica
3.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862660

RESUMO

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína MyoD/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Células Cultivadas , Camundongos , Proteína MyoD/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genética
4.
Mol Cell ; 71(3): 375-388, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29887393

RESUMO

Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation.


Assuntos
Cromatina/metabolismo , Proteína MyoD/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/genética , Cromatina/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo
5.
Stem Cells ; 42(9): 830-847, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38975693

RESUMO

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Fosfatases de Especificidade Dupla , Proteína MyoD , Animais , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Camundongos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Desenvolvimento Muscular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Regeneração
6.
Genes Dev ; 31(7): 648-659, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446595

RESUMO

The molecular determinants of muscle progenitor impairment to regenerate aged muscles are currently unclear. We show that, in a mouse model of replicative senescence, decline in muscle satellite cell-mediated regeneration coincides with activation of DNA damage response (DDR) and impaired ability to differentiate into myotubes. Inhibition of DDR restored satellite cell differentiation ability. Moreover, in replicative human senescent fibroblasts, DDR precluded MYOD-mediated activation of the myogenic program. A DDR-resistant MYOD mutant could overcome this barrier by resuming cell cycle progression. Likewise, DDR inhibition could also restore MYOD's ability to activate the myogenic program in human senescent fibroblasts. Of note, we found that cell cycle progression is necessary for the DDR-resistant MYOD mutant to reverse senescence-mediated inhibition of the myogenic program. These data provide the first evidence of DDR-mediated functional antagonism between senescence and MYOD-activated gene expression and indicate a previously unrecognized requirement of cell cycle progression for the activation of the myogenic program.


Assuntos
Senescência Celular/genética , Dano ao DNA , Fibroblastos/citologia , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Mioblastos/citologia , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Mioblastos/metabolismo
7.
J Cell Mol Med ; 28(14): e18546, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046458

RESUMO

Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/ß-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and ß-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/ß-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.


Assuntos
Apoptose , Cardiomegalia , Proliferação de Células , Insuficiência Cardíaca , MicroRNAs , Miócitos Cardíacos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proliferação de Células/genética , Camundongos , Masculino , Humanos , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
8.
J Biol Chem ; 299(3): 102978, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739949

RESUMO

The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.


Assuntos
Síndrome de Barth , Cardiolipinas , Proteína MyoD , Animais , Camundongos , Aciltransferases/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Camundongos Knockout , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo
9.
Histopathology ; 84(5): 776-793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114270

RESUMO

AIMS: Spindle-cell/sclerosing rhabdomyosarcomas (SS-RMS) are clinically and genetically heterogeneous. They include three well-defined molecular subtypes, of which those with EWSR1/FUS::TFCP2 rearrangements were described only recently. This study aimed to evaluate five new cases of SS-RMS and to perform a clinicopathological and statistical analysis of all TFCP2-rearranged SS-RMS described in the English literature to more comprehensively characterize this rare tumour type. METHODS AND RESULTS: Cases were retrospectively selected and studied by immunohistochemistry, fluorescence in situ hybridization with EWSR1/FUS and TFCP2 break-apart probes, next-generation sequencing (Archer FusionPlex Sarcoma kit and TruSight RNA Pan-Cancer Panel). The PubMed database was searched for relevant peer-reviewed English reports. Five cases of SS-RMS were found. Three cases were TFCP2 rearranged SS-RMS, having FUSex6::TFCP2ex2 gene fusion in two cases and triple gene fusion EWSR1ex5::TFCP2ex2, VAX2ex2::ALKex2 and VAX2intron2::ALKex2 in one case. Two cases showed rhabdomyoblastic differentiation and spindle-round cell/sclerosing morphology, but were characterized by novel genetic fusions including EWSR1ex8::ZBTB41ex7 and PLOD2ex8::RBM6ex7, respectively. In the statistical analysis of all published cases, CDKN2A or ALK alterations, the use of standard chemotherapy and age at presentation in the range of 18-24 years were negatively correlated to overall survival. CONCLUSION: EWSR1/FUS::TFCP2-rearranged SS-RMS is a rare rhabdomyosarcoma subtype, affecting predominantly young adults with average age at presentation 34 years (median 29.5 years; age range 7-86 years), with a predilection for craniofacial bones, rapid clinical course with frequent bone and lung metastases, and poor prognosis (3-year overall survival rate 28%).


Assuntos
Rabdomiossarcoma , Fatores de Transcrição , Adulto Jovem , Criança , Humanos , Adulto , Adolescente , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Fatores de Transcrição/genética , Proteína EWS de Ligação a RNA/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fusão Gênica , Biomarcadores Tumorais/genética , Proteínas de Ligação a RNA/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Proteínas de Ligação a DNA/genética
10.
J Muscle Res Cell Motil ; 45(1): 21-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206489

RESUMO

The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.


Assuntos
Músculo Esquelético , Proteína MyoD , Proteína MyoD/genética , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Diferenciação Celular/genética , Desenvolvimento Muscular/genética
11.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884718

RESUMO

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Assuntos
Redes Reguladoras de Genes , Cardiopatias Congênitas , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Coração/fisiologia , Miocárdio/metabolismo
12.
Pediatr Surg Int ; 40(1): 238, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167102

RESUMO

PURPOSE: We investigated the effects of mouse-derived DFAT on the myogenic differentiation of a mouse-derived myoblast cell line (C2C12) and examined the therapeutic effects of rat-derived DFAT on anal sphincter injury using a rat model. METHODS: C2C12 cells were cultured using DMEM and DFAT-conditioned medium (DFAT-CM), evaluating MyoD and Myogenin gene expression via RT-PCR. DFAT was locally administered to model rats with anorectal sphincter dysfunction 3 days post-CTX injection. Therapeutic effects were assessed through functional assessment, including anal pressure measurement using solid-state manometry pre/post-CTX, and on days 1, 3, 7, 10, 14, 17, and 21 post-DFAT administration. Histological evaluation involved anal canal excision on days 1, 3, 7, 14, and 21 after CTX administration, followed by hematoxylin-eosin staining. RESULTS: C2C12 cells cultured with DFAT-CM exhibited increased MyoD and Myogenin gene expression compared to control. Anal pressure measurements revealed early recovery of resting pressure in the DFAT-treated group. Histologically, DFAT-treated rats demonstrated an increase in mature muscle cells within newly formed muscle fibers on days 14 and 21 after CTX administration, indicating enhanced muscle tissue repair. CONCLUSION: DFAT demonstrated the potential to enhance histological and functional muscle tissue repair. These findings propose DFAT as a novel therapeutic approach for anorectal sphincter dysfunction treatment.


Assuntos
Canal Anal , Modelos Animais de Doenças , Regeneração , Animais , Ratos , Canal Anal/fisiopatologia , Camundongos , Regeneração/fisiologia , Manometria/métodos , Ratos Sprague-Dawley , Adipócitos , Miogenina/genética , Miogenina/metabolismo , Linhagem Celular , Masculino , Desdiferenciação Celular/fisiologia , Proteína MyoD/genética , Diferenciação Celular
13.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673893

RESUMO

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Assuntos
Proliferação de Células , Fator 2 de Crescimento de Fibroblastos , Desenvolvimento Muscular , Proteína MyoD , Mioblastos , Desenvolvimento Muscular/genética , Animais , Camundongos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/genética , Mioblastos/metabolismo , Mioblastos/citologia , Linhagem Celular , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX3/genética , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Diferenciação Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
14.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891908

RESUMO

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Assuntos
Citocinas , MAP Quinase Quinase Quinases , Atrofia Muscular , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/tratamento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Zearalenona/farmacologia , Zearalenona/análogos & derivados
15.
Bull Exp Biol Med ; 176(4): 528-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492102

RESUMO

Reparative properties of infrared laser exposure are well known, but the effects of green laser light are little studied. We analyzed the effects of short (60 sec) and longer (180 sec) exposure to infrared (980 nm) and green (520 nm) laser on the number of activated myosatellite cells in the regenerating m. gastrocnemius of Wistar rats after infliction of an incision wound. Histological preparations were used for morphometric evaluation of myosatellite cells with MyoD+ nuclei. Increased numbers of MyoD+ nuclei were observed on days 3 and 7 after 60-sec exposure to infrared and green laser.


Assuntos
Células Satélites de Músculo Esquelético , Ratos , Animais , Ratos Wistar , Músculo Esquelético , Núcleo Celular
16.
Dev Biol ; 490: 134-143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917935

RESUMO

The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.


Assuntos
Proteína MyoD , Fatores de Regulação Miogênica , Animais , Aorta/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Musculares/genética , Músculo Esquelético , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
J Cell Physiol ; 238(11): 2638-2650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683043

RESUMO

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.


Assuntos
Mioblastos , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Masculino , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos , Mioblastos/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética
18.
EMBO J ; 38(17): e101051, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31328806

RESUMO

VGLL4 has previously been identified as a negative regulator of YAP. Here we show that VGLL4 regulates muscle regeneration in both YAP-dependent and YAP-independent manners at different stages. Knockout of VGLL4 in mice leads to smaller myofiber size and defective muscle contraction force. Furthermore, our studies reveal that knockout of VGLL4 results in increased muscle satellite cells proliferation and impaired myoblast differentiation, which ultimately leads to delayed muscle regeneration. Mechanistically, the results show that VGLL4 works as a conventional repressor of YAP at the proliferation stage of muscle regeneration. At the differentiation stage, VGLL4 acts as a co-activator of TEAD4 to promote MyoG transactivation and facilitate the initiation of differentiation in a YAP-independent manner. Moreover, VGLL4 stabilizes the protein-protein interactions between MyoD and TEAD4 to achieve efficient MyoG transactivation. Our findings define the dual roles of VGLL4 in regulating muscle regeneration at different stages and may open novel therapeutic perspectives for muscle regeneration.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
19.
Biochem Biophys Res Commun ; 682: 223-243, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826946

RESUMO

Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
20.
Development ; 147(8)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345657

RESUMO

Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms.This article has an associated 'The people behind the papers' interview.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Padronização Corporal/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Transdução de Sinais , Proteínas com Domínio T/genética , Transcrição Gênica , Regulação para Cima/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA