Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 181, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285209

RESUMO

Bacillus thuringiensis (Bt) produces crystals composed mainly of Cry pesticidal proteins with insecticidal activity against pests but are highly susceptible to degradation by abiotic factors. In this sense, encapsulation techniques are designed to improve their performance and lifetime. However, the effects of polymeric matrix encapsulation such as gum arabic and maltodextrin by spray-dryer in the mechanisms of action of Bt kurstaki and Bt aizawai are unknown. We analyzed crystal solubilization, protoxin activation, and receptor binding after microencapsulation and compared them with commercial non-encapsulated products. Microencapsulation did not alter protein crystal solubilization, providing 130 kDa (Cry1 protoxin) and 70 kDa (Cry2 protoxin). Activation with trypsin, chymotrypsin, and larval midgut juice was analyzed, showing that this step is highly efficient, and the protoxins were cleaved producing similar ~ 55 to 65 kDa activated proteins for both formulations. Binding assays with brush border membrane vesicles of Manduca sexta and Spodoptera frugiperda larvae provided a similar binding for both formulations. LC50 bioassays showed no significant differences between treatments but the microencapsulated treatment provided higher mortality against S. frugiperda when subjected to UV radiation. Microencapsulation did not affect the mechanism of action of Cry pesticidal proteins while enhancing protection against UV radiation. These data will contribute to the development of more efficient Bt biopesticide formulations. KEY POINTS: • Microencapsulation did not affect the mechanisms of action of Cry pesticidal proteins produced by Bt. • Microencapsulation provided protection against UV radiation for Bt-based biopesticides. • The study's findings can contribute to the development of more efficient Bt biopesticide formulations.


Assuntos
Bacillus thuringiensis , Praguicidas , Polissacarídeos , Animais , Praguicidas/farmacologia , Goma Arábica , Agentes de Controle Biológico , Larva , Controle de Pragas
2.
J Exp Zool B Mol Dev Evol ; 340(3): 270-276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35676886

RESUMO

For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.


Assuntos
Tamanho Corporal , Insetos , Animais , Formigas , Drosophila melanogaster , Insetos/crescimento & desenvolvimento , Larva , Manduca
3.
J Exp Biol ; 226(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37338185

RESUMO

Extreme high temperatures associated with climate change can affect species directly, and indirectly through temperature-mediated species interactions. In most host-parasitoid systems, parasitization inevitably kills the host, but differences in heat tolerance between host and parasitoid, and between different hosts, may alter their interactions. Here, we explored the effects of extreme high temperatures on the ecological outcomes - including, in some rare cases, escape from the developmental disruption of parasitism - of the parasitoid wasp, Cotesia congregata, and two co-occurring congeneric larval hosts, Manduca sexta and M. quinquemaculata. Both host species had higher thermal tolerance than C. congregata, resulting in a thermal mismatch characterized by parasitoid (but not host) mortality under extreme high temperatures. Despite parasitoid death at high temperatures, hosts typically remain developmentally disrupted from parasitism. However, high temperatures resulted in a partial developmental recovery from parasitism (reaching the wandering stage at the end of host larval development) in some host individuals, with a significantly higher frequency of this partial developmental recovery in M. quinquemaculata than in M. sexta. Hosts species also differed in their growth and development in the absence of parasitoids, with M. quinquemaculata developing faster and larger at high temperatures relative to M. sexta. Our results demonstrate that co-occurring congeneric species, despite shared environments and phylogenetic histories, can vary in their responses to temperature, parasitism and their interaction, resulting in altered ecological outcomes.


Assuntos
Interações Hospedeiro-Parasita , Vespas , Humanos , Animais , Filogenia , Especificidade da Espécie , Vespas/fisiologia , Larva
4.
J Exp Biol ; 226(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995279

RESUMO

Many animals use body parts such as tails to stabilize posture while moving at high speed. In flying insects, leg or abdominal inertia can influence flight posture. In the hawkmoth Manduca sexta, the abdomen contributes ∼50% of the total body weight and it can therefore serve to inertially redirect flight forces. How do torques generated by the wings and abdomen interact for flight control? We studied the yaw optomotor response of M. sexta by using a torque sensor attached to their thorax. In response to yaw visual motion, the abdomen moved antiphase with the stimulus, head and total torque. By studying moths with ablated wings and a fixed abdomen, we resolved abdomen and wing torques and revealed their individual contribution to total yaw torque production. Frequency-domain analysis revealed that the abdomen torque is overall smaller than wing torque, although the abdomen torque is ∼80% of the wing torque at higher visual stimulus temporal frequency. Experimental data and modeling revealed that the wing and abdomen torque are transmitted linearly to the thorax. By modeling the thorax and abdomen as a two-link system, we show that abdomen flexion can inertially redirect the thorax to add constructively to wing steering efforts. Our work argues for considering the role of the abdomen in tethered insect flight experiments that use force/torque sensors. Taken together, the hawkmoth abdomen can regulate wing torques in free flight, which could modulate flight trajectories and increase maneuverability.


Assuntos
Voo Animal , Manduca , Animais , Torque , Fenômenos Biomecânicos , Voo Animal/fisiologia , Abdome , Manduca/fisiologia , Asas de Animais/fisiologia , Insetos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37119960

RESUMO

Manduca sexta are endothermic insects, requiring adult thorax temperatures to be elevated above 35 °C for flight muscles to produce the wing beat frequencies necessary for flight. During flight, these animals rely on aerobic production of ATP by flight muscle mitochondria with several potential metabolic pathways providing the fuel. Along with typical carbohydrate substrates, mitochondria of other endothermic insects including bumblebees and wasps can use the amino acid proline or glycerol 3-phosphate (G3P) as metabolic fuel for prewarm up and flight. Here we examine flight muscle mitochondria physiology and the role of temperature and substrates in oxidative phosphorylation from 3-day old adult Manduca sexta. Mitochondria oxygen flux from flight muscle fibers were temperature sensitive with Q10 values ranging from 1.99 to 2.90, with a large increase in LEAK respiration with increased temperature. Mitochondria oxygen flux was stimulated by carbohydrate-based substrates, with flux through Complex I substrates providing the greatest oxygen flux. Neither proline nor G3P produced an increase in oxygen flux of the flight muscle mitochondria. Unlike other endothermic insects, Manduca are unable to supplement carbohydrate oxidation with either proline or G3P entering through Coenzyme Q and rely on substrates entering at complex I and II.


Assuntos
Manduca , Animais , Manduca/fisiologia , Temperatura , Mitocôndrias Musculares/metabolismo , Insetos , Prolina/metabolismo , Oxigênio/metabolismo , Voo Animal/fisiologia
6.
Biol Lett ; 18(5): 20220063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35611583

RESUMO

Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta, we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth's resonant frequency. We find that the hawkmoth's wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers.


Assuntos
Manduca , Animais , Fenômenos Biomecânicos , Voo Animal , Insetos , Modelos Biológicos , Asas de Animais
7.
Proc Natl Acad Sci U S A ; 116(29): 14651-14660, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262827

RESUMO

Plant volatile organic compounds (VOCs) mediate many interactions, and the function of common VOCs is especially likely to depend on ecological context. We used a genetic mapping population of wild tobacco, Nicotiana attenuata, originating from a cross of 2 natural accessions from Arizona and Utah, separated by the Grand Canyon, to dissect genetic variation controlling VOCs. Herbivory-induced leaf terpenoid emissions varied substantially, while green leaf volatile emissions were similar. In a field experiment, only emissions of linalool, a common VOC, correlated significantly with predation of the herbivore Manduca sexta by native predators. Using quantitative trait locus mapping and genome mining, we identified an (S)-(+)-linalool synthase (NaLIS). Genome resequencing, gene cloning, and activity assays revealed that the presence/absence of a 766-bp sequence in NaLIS underlies the variation of linalool emissions in 26 natural accessions. We manipulated linalool emissions and composition by ectopically expressing linalool synthases for both enantiomers, (S)-(+)- and (R)-(-)-linalool, reported to oppositely affect M. sexta oviposition, in the Arizona and Utah accessions. We used these lines to test ovipositing moths in increasingly complex environments. The enantiomers had opposite effects on oviposition preference, but the magnitude of the effect depended strongly both on plant genetic background, and complexity of the bioassay environment. Our study reveals that the emission of linalool, a common VOC, differs by orders-of-magnitude among geographically interspersed conspecific plants due to allelic variation in a linalool synthase, and that the response of a specialist herbivore to linalool depends on enantiomer, plant genotype, and environmental complexity.


Assuntos
Monoterpenos Acíclicos/toxicidade , Hidroliases/genética , Manduca/efeitos dos fármacos , Nicotiana/genética , Comportamento Predatório/efeitos dos fármacos , Monoterpenos Acíclicos/metabolismo , Animais , Arizona , Feminino , Genótipo , Geografia , Interações Hospedeiro-Parasita/genética , Hidroliases/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Manduca/fisiologia , Oviposição/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas , Locos de Características Quantitativas , Estereoisomerismo , Nicotiana/enzimologia , Nicotiana/parasitologia , Utah , Compostos Orgânicos Voláteis
8.
Proc Natl Acad Sci U S A ; 116(43): 21828-21833, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591212

RESUMO

Finding a suitable oviposition site is a challenging task for a gravid female moth. At the same time, it is of paramount importance considering the limited capability of most caterpillars to relocate to alternative host plants. The hawkmoth, Manduca sexta (Sphingidae), oviposits on solanaceous plants. Larvae hatching on a plant that is already attacked by conspecific caterpillars can face food competition, as well as an increased exposure to predators and induced plant defenses. Here, we show that feces from conspecific caterpillars are sufficient to deter a female M. sexta from ovipositing on a plant and that this deterrence is based on the feces-emitted carboxylic acids 3-methylpentanoic acid and hexanoic acid. Using a combination of genome editing (CRISPR-Cas9), electrophysiological recordings, calcium imaging, and behavioral analyses, we demonstrate that ionotropic receptor 8a (IR8a) is essential for acid-mediated feces avoidance in ovipositing hawkmoths.


Assuntos
Fezes/química , Oviposição/fisiologia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/fisiologia , Animais , Caproatos/metabolismo , Feminino , Mariposas/anatomia & histologia , Odorantes , Pentanos/metabolismo , Plantas
9.
Proc Natl Acad Sci U S A ; 116(31): 15677-15685, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31320583

RESUMO

The hawkmoth Manduca sexta and one of its preferred hosts in the North American Southwest, Datura wrightii, share a model insect-plant relationship based on mutualistic and antagonistic life-history traits. D. wrightii is the innately preferred nectar source and oviposition host for M. sexta Hence, the hawkmoth is an important pollinator while the M. sexta larvae are specialized herbivores of the plant. Olfactory detection of plant volatiles plays a crucial role in the behavior of the hawkmoth. In vivo, the odorant receptor coreceptor (Orco) is an obligatory component for the function of odorant receptors (ORs), a major receptor family involved in insect olfaction. We used CRISPR-Cas9 targeted mutagenesis to knock out (KO) the MsexOrco gene to test the consequences of a loss of OR-mediated olfaction in an insect-plant relationship. Neurophysiological characterization revealed severely reduced antennal and antennal lobe responses to representative odorants emitted by D. wrightii In a wind-tunnel setting with a flowering plant, Orco KO hawkmoths showed disrupted flight orientation and an ablated proboscis extension response to the natural stimulus. The Orco KO gravid female displayed reduced attraction toward a nonflowering plant. However, more than half of hawkmoths were able to use characteristic odor-directed flight orientation and oviposit on the host plant. Overall, OR-mediated olfaction is essential for foraging and pollination behaviors, but plant-seeking and oviposition behaviors are sustained through additional OR-independent sensory cues.


Assuntos
Comportamento Alimentar/fisiologia , Proteínas de Insetos/metabolismo , Manduca/metabolismo , Oviposição/fisiologia , Receptores Odorantes/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Proteínas de Insetos/genética , Masculino , Manduca/genética , Receptores Odorantes/genética
10.
Proc Biol Sci ; 288(1951): 20210352, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034520

RESUMO

Centimetre-scale fliers must contend with the high power requirements of flapping flight. Insects have elastic elements in their thoraxes which may reduce the inertial costs of their flapping wings. Matching wingbeat frequency to a mechanical resonance can be energetically favourable, but also poses control challenges. Many insects use frequency modulation on long timescales, but wingstroke-to-wingstroke modulation of wingbeat frequencies in a resonant spring-wing system is potentially costly because muscles must work against the elastic flight system. Nonetheless, rapid frequency and amplitude modulation may be a useful control modality. The hawkmoth Manduca sexta has an elastic thorax capable of storing and returning significant energy. However, its nervous system also has the potential to modulate the driving frequency of flapping because its flight muscles are synchronous. We tested whether hovering hawkmoths rapidly alter frequency during perturbations with vortex rings. We observed both frequency modulation (32% around mean) and amplitude modulation (37%) occurring over several wingstrokes. Instantaneous phase analysis of wing kinematics revealed that more than 85% of perturbation responses required active changes in neurogenic driving frequency. Unlike their robotic counterparts that abdicate frequency modulation for energy efficiency, synchronous insects use wingstroke-to-wingstroke frequency modulation despite the power demands required for deviating from resonance.


Assuntos
Voo Animal , Manduca , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Asas de Animais
11.
Plant Cell Environ ; 44(3): 982-994, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33190219

RESUMO

Long non-coding RNA (lncRNA) are important regulators of many biological processes in plants, including defence against pathogens; whether lncRNAs mediate defence against herbivore attack is yet to be explored. With wild tobacco, Nicotiana attenuata, and its well-characterized interactions with herbivores, we identified a total of 1,290 significantly up- or down-regulated lncRNAs in response to a precise herbivore elicitation treatment. Of these, long intergenic non-coding RNAs (lincRNAs) were the most abundant. Based on their expression patterns, these up-regulated lincRNAs were classified as early (<1 hr) or late (>3 hr) responders. The early responding lincRNAs had accumulation patterns that tracked the herbivore-elicited burst of bioactive jasmonates (JAs) and the expression of regulator genes in JA signalling which regulate plant defences against herbivores. Silencing two of these early responders in N. attenuata (JAL1 and JAL3) significantly attenuated the accumulation of JAs, JA-mediated defensives and the plant's resistance to M. sexta attack, suggesting roles in regulating JA-mediated plant defence. By lincRNA sequencing of JA-deficient lines, many late responder lincRNAs were found to be transcriptionally regulated by JA signalling. This study uncovers a new role of lncRNAs in JA-mediated herbivore resistance.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Defesa das Plantas contra Herbivoria , Reguladores de Crescimento de Plantas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Animais , Regulação da Expressão Gênica de Plantas/genética , Manduca , Defesa das Plantas contra Herbivoria/genética , Defesa das Plantas contra Herbivoria/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/genética , RNA de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
12.
J Exp Biol ; 224(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647571

RESUMO

Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms as these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during M. sexta intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the D. melanogaster dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A-band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncovered the actin filament regulator ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may eventually lead to therapeutic targets.


Assuntos
Drosophila melanogaster , Manduca , Animais , Drosophila melanogaster/genética , Proteínas Musculares/genética , Atrofia Muscular/genética , Proteômica
13.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34142140

RESUMO

The nearly ubiquitous presence of amino acids in the nectar of flowering plants has led to significant interest in the relevance of these compounds to pollinator behavior and physiology. A number of flower-visiting animals exhibit behavioral preferences for nectar solutions containing amino acids, but these preferences vary by species and are often context or condition dependent. Furthermore, the relative strength of these preferences and potential influence on the foraging behavior of flower-visiting animals remains unclear. Here, we used innate preference tests and associative learning paradigms to examine the nectar preferences of the flower-visiting hawkmoth Manduca sexta, in relation to both sugar and amino acid content. Manduca sexta exhibited a strong preference for higher sucrose concentrations, while the effect of amino acids on innate feeding preference was only marginally significant. However, with experience, moths were able to learn nectar composition and flower color associations and to forage preferentially (against innate color preference) for nectar with a realistic amino acid composition. Foraging moths responding to learned color cues of nectar amino acid content exhibited a behavioral preference comparable to that observed in response to a 5% difference in nectar sucrose concentration. These results demonstrate that experienced foragers may assess nectar amino acid content in addition to nectar sugar content and caloric value during nectar-foraging bouts.


Assuntos
Manduca , Mariposas , Aminoácidos , Animais , Flores , Néctar de Plantas , Açúcares
14.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34427309

RESUMO

Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second 'nose' of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis.


Assuntos
Manduca , Mariposas , Animais , Flores , Aprendizagem , Odorantes
15.
Annu Rev Entomol ; 65: 1-16, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31600455

RESUMO

This autobiographical article describes the research career of Lynn M. Riddiford from its early beginnings in a summer program for high school students at Jackson Laboratory to the present "retirement" at the Friday Harbor Laboratories. The emphasis is on her forays into many areas of insect endocrinology, supported by her graduate students and postdoctoral associates. The main theme is the hormonal regulation of metamorphosis, especially the roles of juvenile hormone (JH). The article describes the work of her laboratory first in the elucidation of the endocrinology of the tobacco hornworm, Manduca sexta, and later in the molecular aspects of the regulation of cuticular and pigment proteins and of the ecdysone-induced transcription factor cascade during molting and metamorphosis. Later studies utilized Drosophila melanogaster to answer further questions about the actions of JH.


Assuntos
Endocrinologia/história , Entomologia/história , Metamorfose Biológica , Universidades/história , Animais , Evolução Biológica , Drosophila/fisiologia , História do Século XX , História do Século XXI , Hormônios Juvenis/metabolismo , Larva/fisiologia , Manduca/fisiologia , Olfato
16.
Physiol Genomics ; 52(10): 492-511, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926651

RESUMO

Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicate molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a nonpathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behavior and initiate a nonapoptotic PCD during the next 30 h. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion, and the contractile apparatus. In contrast, PCD involves the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.


Assuntos
Apoptose/genética , Genes de Insetos , Manduca/genética , Atrofia Muscular/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Contráteis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Contração Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , RNA Mensageiro/genética
17.
Plant Cell Environ ; 43(3): 787-800, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759336

RESUMO

Plants produce species-specific herbivore-induced plant volatiles (HIPVs) after damage. We tested the hypothesis that herbivore-specific HIPVs prime neighboring plants to induce defenses specific to the priming herbivore. Since Manduca sexta (specialist) and Heliothis virescens (generalist) herbivory induced unique HIPV profiles in Nicotiana benthamiana, we used these HIPVs to prime receiver plants for defense responses to simulated herbivory (mechanical wounding and herbivore regurgitant application). Jasmonic acid (JA) accumulations and emitted volatile profiles were monitored as representative defense responses since JA is the major plant hormone involved in wound and defense signaling and HIPVs have been implicated as signals in tritrophic interactions. Herbivore species-specific HIPVs primed neighboring plants, which produced 2 to 4 times more volatiles and JA after simulated herbivory when compared to similarly treated constitutive volatile-exposed plants. However, HIPV-exposed plants accumulated similar amounts of volatiles and JA independent of the combination of priming or challenging herbivore. Furthermore, volatile profiles emitted by primed plants depended only on the challenging herbivore species but not on the species-specific HIPV profile of damaged emitter plants. This suggests that feeding by either herbivore species primed neighboring plants for increased HIPV emissions specific to the subsequently attacking herbivore and is probably controlled by JA.


Assuntos
Herbivoria/fisiologia , Nicotiana/imunologia , Nicotiana/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Ciclopentanos/metabolismo , Manduca/fisiologia , Mariposas/fisiologia , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Nicotiana/parasitologia
18.
Am J Bot ; 107(2): 286-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944272

RESUMO

PREMISE: Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS: Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS: We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS: This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.


Assuntos
Manduca , Solanum , Animais , Herbivoria , Endogamia , Reprodução
19.
J Chem Ecol ; 46(10): 987-996, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875538

RESUMO

Insect pollination is essential to many unmanaged and agricultural systems and as such is a key element in food production. However, floral scents that pollinating insects rely on to locate host plants may be altered by atmospheric oxidants, such as ozone, potentially making these cues less attractive or unrecognizable to foraging insects and decreasing pollinator efficacy. We demonstrate that levels of tropospheric ozone commonly found in many rural areas are sufficient to disrupt the innate attraction of the tobacco hawkmoth Manduca sexta to the odor of one of its preferred flowers, Nicotiana alata. However, we further find that visual navigation together with associative learning can offset this disruption. Foraging moths that initially find an ozone-altered floral scent unattractive can target an artificial flower using visual cues and associate the ozone-altered floral blend with a nectar reward. The ability to learn ozone-altered floral odors may enable pollinators to maintain communication with their co-evolutionary partners and reduce the negative impacts that anthropogenically elevated oxidants may have on plant-pollinator systems.


Assuntos
Comportamento Animal/efeitos dos fármacos , Flores/fisiologia , Manduca/fisiologia , Nicotiana/fisiologia , Percepção Olfatória/efeitos dos fármacos , Ozônio/toxicidade , Animais , Flores/química , Flores/efeitos dos fármacos , Odorantes/análise , Polinização , Nicotiana/efeitos dos fármacos
20.
J Chem Ecol ; 46(3): 330-343, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989490

RESUMO

Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.


Assuntos
Aminoácidos/metabolismo , Antibiose , Ácidos Graxos/metabolismo , Herbivoria , Manduca/fisiologia , Solanaceae/fisiologia , Animais , Larva , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA