RESUMO
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.
Assuntos
Mutação com Ganho de Função/genética , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais , Adulto , Idoso , Índice de Massa Corporal , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , AMP Cíclico/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , beta-Arrestinas/metabolismoRESUMO
Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.
Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Assuntos
Peso Corporal , Ingestão de Alimentos , Elementos Facilitadores Genéticos , Hipotálamo , Pró-Opiomelanocortina , Peixe-Zebra , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Camundongos , Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mamíferos/metabolismo , Mamíferos/genéticaRESUMO
α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.
Assuntos
Remodelação Ventricular , alfa-MSH , Camundongos , Animais , alfa-MSH/farmacologia , Receptores da Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , FibroseRESUMO
Melanocortin receptors have emerged as important targets with a very unusual versatility, as their widespread distribution on multiple tissues (e.g. skin, adrenal glands, brain, immune cells, exocrine glands) together with the variety of physiological processes they control (pigmentation, cortisol release, satiety mechanism, inflammation, secretions), place this family of receptors as genuine therapeutic targets for many disorders. This review focuses in the journey of the development of melanocortin receptors as therapeutic targets from the discovery of their existence in the early 1990 s to the approval of the first few drugs of this class. Two major areas of development characterise the current state of melanocortin drug development: their role in obesity, recently culminated with the approval of setmelanotide, and their potential for the treatment of chronic inflammatory and autoimmune diseases like rheumatoid arthritis, multiple sclerosis or fibrosis. The pro-resolving nature of these drugs offers the advantage of acting by mimicking the way our body naturally resolves inflammation, expecting fewer side effects and a more balanced (i.e. non-immunosuppressive) response from them. Here we also review the approaches followed for the design and development of novel compounds, the importance of the GPCR nature of these receptors in the process of drug development, therapeutic value, current challenges and successes, and the potential for the implementation of precision medicine approaches through the incorporation of genetics advances.
Assuntos
Artrite Reumatoide , Melanocortinas , Humanos , Proteínas de Transporte , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Melanocortinas/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismoRESUMO
Overexpression of the agouti-signaling protein (asip1), an endogenous melanocortin antagonist, under the control of a constitutive promoter in zebrafish [Tg(Xla.Eef1a1:Cau.Asip1]iim4] (asip1-Tg) increases food intake by reducing sensitivity of the central satiety systems and abolish circadian activity rhythms. The phenotype also shows increased linear growth and body weight, yet no enhanced aggressiveness in dyadic fights is observed. In fact, asip1-Tg animals choose to flee to safer areas rather than face a potential threat, thus suggesting a potential anxiety-like behavior (ALB). Standard behavioral tests, i.e., the open field test (OFT), the novel object test (NOT), and the novel tank dive test (NTDT), were used to investigate thigmotaxis and ALB in male and female zebrafish. Results showed that the asip1-Tg strain exhibited severe ALB in every test, mainly characterized by pronounced freezing behavior and increased linear and angular swimming velocities. asip1-Tg animals exhibited low central serotonin (5-HT) and dopamine (DA) levels and high turnover rates, thus suggesting that central monoaminergic pathways might mediate melanocortin antagonist-induced ALB. Accordingly, the treatment of asip1-Tg animals with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reversed the ALB phenotype in NTDT as well as 5-HT turnover. Genomic and anatomical data further supported neuronal interaction between melanocortinergic and serotonergic systems. These results suggest that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonist has an anxiogenic effect mediated by serotonergic transmission.
Assuntos
Ansiedade , Serotonina , Peixe-Zebra , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Masculino , Feminino , Serotonina/metabolismo , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Dopamina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genéticaRESUMO
Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.
Assuntos
Astrócitos , Metabolismo Energético , Hipotálamo , Neurônios , Astrócitos/metabolismo , Astrócitos/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Animais , Humanos , Neurônios/fisiologia , Neurônios/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologiaRESUMO
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Assuntos
Hipotálamo , Leptina , Camundongos Knockout , Neurônios , Pró-Opiomelanocortina , Receptores para Leptina , Canais de Potássio Shab , Animais , Camundongos , Neurônios/metabolismo , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Hipotálamo/metabolismo , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/genética , Transdução de Sinais , Masculino , Núcleo Arqueado do Hipotálamo/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos Endogâmicos C57BL , Melanocortinas/metabolismoRESUMO
Stroke remains the second leading cause of death worldwide. The development of new therapeutic agents focused on restoring vascular function and neuroprotection of viable tissues is required. In this study the neuroprotective activity of melanocortin-like ACTH(4-7)PGP and ACTH(6-9)PGP peptides was investigated in rat brain at 24 h after transient middle cerebral artery occlusion (tMCAO). The severity of ischemic damage, changes in the proliferative activity of neuroglial cells and vascularization of rat brain tissue were analyzed. The administration of peptides resulted in a significant increase in the volume density of neurons in the perifocal zone of infarction compared to rats subjected to ischemia and receiving saline. Immunohistochemical analysis of the proliferative activity of neuroglia cells using PCNA antibodies showed a significant increase in the number of proliferating cells in the penumbra and in the intact cerebral cortex of rats receiving peptide treatment. The effect of peptides on vascularization was examined using CD31 antibodies under tMCAO conditions, revealing a significant increase in the volume density of vessels and their sizes in the penumbra after administration of ACTH(4-7)PGP and ACTH(6-9)PGP. These findings confirm the neuroprotective effect of peptides due to the activation of neuroglia proliferation and the enhancement of collateral blood flow.
RESUMO
Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit ß-arrestins upon PK2 stimulation, although the interaction between PKR2 and ß-arrestins does not trigger receptor internalisation. MRAP2 inhibits the anorexigenic effect of PK2 by binding PKR1 and PKR2. The aim of this work was to elucidate the role of MRAP2 in modulating PKR2-induced ß-arrestin-2 recruitment and ß-arrestin-mediated signalling. This study could allow the identification of new specific targets for potential new drugs useful for the treatment of the various pathologies correlated with prokineticin, in particular, obesity.
RESUMO
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Assuntos
Peptídeos Cíclicos , alfa-MSH/análogos & derivados , Cisteína , IndóisRESUMO
The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN â LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.
Assuntos
Núcleo Hipotalâmico Paraventricular , Receptor Tipo 4 de Melanocortina , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Peso Corporal , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Aumento de PesoRESUMO
The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.
Assuntos
Ibuprofeno , Lutécio , alfa-MSH , Animais , Camundongos , alfa-MSH/química , alfa-MSH/farmacocinética , Lutécio/química , Distribuição Tecidual , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/farmacologia , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Radioisótopos/química , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Albuminas/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , FemininoRESUMO
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Hipotálamo , Obesidade , Hormônios Peptídicos , Humanos , Hipotálamo/metabolismo , Animais , Hormônios Peptídicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Melanocortinas/metabolismoRESUMO
Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.
Assuntos
Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Leptina/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/terapia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/terapia , Obesidade/genética , Hipotálamo/metabolismo , Craniofaringioma/complicações , Craniofaringioma/terapia , Craniofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Melanocortinas/metabolismo , Metabolismo Energético/fisiologiaRESUMO
The melanocortin 4 receptor (MC4R) plays a critical role in satiety and energy homeostasis, and its dysregulation is implicated in numerous hyperphagic and obese disease states. Setmelanotide, a disulfide-based cyclic peptide, can rescue MC4R activity and treat obesities caused by genetic defects in MC4R signaling. But this peptide has moderate blood-brain barrier penetrance and metabolic stability, which can limit its efficacy in practice. Based on the cryo-electron microscopy structure of setmelanotide-bound MC4R, we hypothesized that replacing its lone disulfide bond with more metabolically stable and permeability-enhancing carbon-based linker groups could improve pharmacokinetic properties without abolishing activity. To test this, we used chemistry developed by our lab to prepare 11 carbocyclic (alkyl, aryl, perfluoroalkyl, and ethereal) analogs of setmelanotide and determined their biochemical potencies at MC4R in vitro. Ten analogs displayed full agonism, showing that disulfide replacement is tolerant of linkers ranging in size, rigidity, and functional groups, with heteroatom- or aryl-rich linkers displaying superior potencies.
RESUMO
The prevalence of obesity in children and adolescents is increasing, and it is recognised as a complex disorder that often begins in early childhood and persists throughout life. Both polygenic and monogenic obesity are influenced by a combination of genetic predisposition and environmental factors. Rare genetic obesity forms are caused by specific pathogenic variants in single genes that have a significant impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. Genetic testing is recommended for patients who exhibit rapid weight gain in infancy and show additional clinical features suggestive of monogenic obesity as an early identification allows for appropriate treatment, preventing the development of obesity-related complications, avoiding the failure of traditional treatment approaches. In the past, the primary recommendations for managing obesity in children and teenagers have been focused on making multiple lifestyle changes that address diet, physical activity, and behaviour, with the goal of maintaining these changes long-term. However, achieving substantial and lasting weight loss and improvements in body mass index (BMI) through lifestyle interventions alone is rare. Recently the progress made in genetic analysis has paved the way for innovative pharmacological treatments for different forms of genetic obesity. By understanding the molecular pathways that contribute to the development of obesity, it is now feasible to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms. Conclusion: However, additional preclinical research and studies in the paediatric population are required, both to develop more personalised prevention and therapeutic programs, particularly for the early implementation of innovative and beneficial management options, and to enable the translation of these novel therapy approaches into clinical practice. What is Known: ⢠The prevalence of obesity in the paediatric population is increasing, and it is considered as a multifaceted condition that often begins in early childhood and persists in the adult life. Particularly, rare genetic forms of obesity are influenced by a combination of genetic predisposition and environmental factors and are caused by specific pathogenic variants in single genes showing a remarkable impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. ⢠Patients who present with rapid weight gain in infancy and show additional clinical characteristics indicative of monogenic obesity should undergo genetic testing, which, by enabling a correct diagnosis, can prevent the development of obesity-related consequences through the identification for appropriate treatment. What is New: ⢠In recent years, advances made in genetic analysis has made it possible to develop innovative pharmacological treatments for various forms of genetic obesity. In fact, it is now achievable to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms by understanding the molecular pathways involved in the development of obesity. ⢠As demonstrated over the last years, two drugs, setmelanotide and metreleptin, have been identified as potentially effective interventions in the treatment of certain rare forms of monogenic obesity caused by loss-of-function mutations in genes involved in the leptin-melanocortin pathway. Recent advancements have led to the development of novel treatments, including liraglutide, semaglutide and retatrutide, that have the potential to prevent the progression of metabolic abnormalities and improve the prognosis of individuals with these rare and severe forms of obesity. However, extensive preclinical research and, specifically, additional studies in the paediatric population are necessary to facilitate the translation of these innovative treatment techniques into clinical practice.
Assuntos
Obesidade Infantil , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Obesidade Infantil/tratamento farmacológico , Obesidade Infantil/genética , Leptina , Predisposição Genética para Doença , alfa-MSH/genética , Aumento de PesoRESUMO
Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen's role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers.
Assuntos
Galinhas , Plumas , Caracteres Sexuais , Animais , Plumas/metabolismo , Galinhas/metabolismo , Masculino , Feminino , Hormônios Tireóideos/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologiaRESUMO
Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.
Assuntos
Comportamento Alimentar/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Masculino , Camundongos , Microscopia de Fluorescência , Rede Nervosa , Imagem Óptica , Núcleo Hipotalâmico Paraventricular/citologia , Receptor Tipo 3 de Melanocortina/agonistas , Análise de Célula ÚnicaRESUMO
Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.