Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454158

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Assuntos
Remodelação Ventricular , alfa-MSH , Camundongos , Animais , alfa-MSH/farmacologia , Receptores da Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrose
2.
Curr Issues Mol Biol ; 46(2): 1607-1620, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392222

RESUMO

Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit ß-arrestins upon PK2 stimulation, although the interaction between PKR2 and ß-arrestins does not trigger receptor internalisation. MRAP2 inhibits the anorexigenic effect of PK2 by binding PKR1 and PKR2. The aim of this work was to elucidate the role of MRAP2 in modulating PKR2-induced ß-arrestin-2 recruitment and ß-arrestin-mediated signalling. This study could allow the identification of new specific targets for potential new drugs useful for the treatment of the various pathologies correlated with prokineticin, in particular, obesity.

3.
Am J Physiol Cell Physiol ; 324(3): C694-C706, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717105

RESUMO

The inward rectifier potassium channel Kir7.1, encoded by the KCNJ13 gene, is a tetramer composed of two-transmembrane domain-spanning monomers, closer in homology to Kir channels associated with potassium transport such as Kir1.1, 1.2, and 1.3. Compared with other channels, Kir7.1 exhibits small unitary conductance and low dependence on external potassium. Kir7.1 channels also show a phosphatidylinositol 4,5-bisphosphate (PIP2) dependence for opening. Accordingly, retinopathy-associated Kir7.1 mutations mapped at the binding site for PIP2 resulted in channel gating defects leading to channelopathies such as snowflake vitreoretinal degeneration and Leber congenital amaurosis in blind patients. Lately, this channel's role in energy homeostasis was reported due to the direct interaction with the melanocortin type 4 receptor (MC4R) in the hypothalamus. As this channel seems to play a multipronged role in potassium homeostasis and neuronal excitability, we will discuss what is predicted from a structural viewpoint and its possible implications for hunger control.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Mutação , Neurônios/metabolismo , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Domínios Proteicos
4.
BMC Endocr Disord ; 23(1): 83, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072742

RESUMO

BACKGROUND: Previous studies have shown that the minor allele (C allele) for melanocortin 4 receptor (MC4R) rs17782313 may be associated with depressed mood. Moreover, dietary patterns have potentially adverse effects on depression. This study investigates the interactions between the MC4R gene variant (rs17782313) and dietary patterns on depression among Iranian obese and overweight women. METHODS: A total of 289 Iranian overweight and obese women, aged 18-50 years, were enrolled in this cross-sectional study. Biochemical, anthropometric, and body composition indices were assessed in all participants. Moreover, MC4R rs17782313, by the restriction fragment length polymorphism (PCR-RFLP) method, and depression, using the 21-item Depression Anxiety Stress Scales (DASS) questionnaire, were assessed. Food intakes were assessed by completing a 147-item semi-quantitative food frequency questionnaire (FFQ). RESULTS: By the use of factor analysis, 2 major dietary patterns were extracted: healthy dietary pattern (HDP) and unhealthy dietary pattern (UDP). Binary logistic analysis showed that individuals with minor allele risk (CC) with high adherence to the unhealthy pattern increased odds for depression (OR: 8.77, 95%CI: -0.86-18.40, P: 0.07), after controlling for confounders. Also, a logical inverse relationship was observed between CT genotype and HDP on depression in the crude and adjusted models (OR: -0.56, 95% CI: -3.69-2.57, P: 0.72) (OR: -4.17, 95% CI: -9.28-0.94, P: 0.11), although this interaction was not statistically significant. CONCLUSION: According to the above findings, adherence to unhealthy food intake pattern increases odds of depression in MC4R risk allele (C allele) carriers. To confirm these findings, more studies are needed in the form of clinical trials and prospective studies with higher sample sizes.


Assuntos
Depressão , Sobrepeso , Humanos , Feminino , Sobrepeso/epidemiologia , Sobrepeso/genética , Estudos Transversais , Estudos Prospectivos , Irã (Geográfico)/epidemiologia , Depressão/etiologia , Depressão/genética , Obesidade/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Receptor Tipo 4 de Melanocortina/genética
5.
Exp Eye Res ; 218: 108986, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35196505

RESUMO

The melanocortin system plays an essential role in the regulation of immune activity. The anti-inflammatory microenvironment of the eye is dependent on the expression of the melanocortin-neuropeptide alpha-melanocyte stimulating hormone (α-MSH). In addition, the melanocortin system may have a role in retinal development and retinal cell survival under conditions of retinal degeneration. We have found that treating experimental autoimmune uveitis (EAU) with α-MSH suppresses retinal inflammation. Also, this augmentation of the melanocortin system promotes immune tolerance and protection of the retinal structure. The benefit of α-MSH-therapy appears to be dependent on different melanocortin receptors. Therefore, we treated EAU mice with α-MSH-analogs with different melanocortin-receptor targets. This approach demonstrated which melanocortin-receptors suppress inflammation, preserve retinal structure, and induce immune tolerance in uveitis. At the chronic stage of EAU the mice were injected twice 1 day apart with 50 µg of α-MSH or an α-MSH-analog. The α-MSH-analogs were a pan-agonist PL8331, PL8177 (potent MC1r-only agonist), PL5000 (a pan-agonist with no MC5r functional activity), MT-II (same as PL5000) and PG901 (MC5r agonist, but also an antagonist to MC3r, and MC4r). Clinical EAU scores were measured until resolution in the α-MSH-treated mice, when the eyes were collected for histology, and spleen cells collected for retinal-antigen-stimulated cytokine production. Significant suppression of EAU was seen with α-MSH or PL8331 treatment. This was accompanied with significant preservation of retinal structure. A similar effect was seen in EAU-mice that were treated with PL8177, except the suppression of EAU was temporary. In EAU mice treated with PL5000, MTII, or PG901, there was no suppression of EAU with a significant loss in whole retina and outer-nuclear layer thickness. There was significant suppression of IL-17 with induction of IL-10 by retinal-antigen stimulated spleen T cells from EAU mice treated with α-MSH, PL8331, PL8177, or PL5000, but not from EAU mice treated with MT-II, or PG901. Our previous studies show the melanocortin system's importance in maintaining ocular immune privilege and that α-MSH-treatment accelerates recovery and induces retinal-antigen-specific regulatory immunity in EAU. Our current results show that this activity is centered around MC1r and MC5r. In addition, the results suggest that a therapeutic potential to target MC1r and MC5r together to suppress uveitis induces regulatory immunity with potentially maintaining a normal retinal structure.


Assuntos
Uveíte , alfa-MSH , Animais , Inflamação/metabolismo , Camundongos , Receptores de Melanocortina/metabolismo , Retina/metabolismo , Uveíte/metabolismo , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
6.
Fish Shellfish Immunol ; 131: 838-846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334699

RESUMO

The melanocortin system is an ancient neuroendocrine system conserved from teleosts to mammals. The melanocortin system is a set of complex neuroendocrine signaling pathways involved in numerous physiological processes, and particularly associated with the hypothalamic-pituitary-interrenal (HPI) axis response. The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in pigmentation in vertebrates, including fish. In order to assess the immune role of MC1R, this study used a homozygous Mc1r knockout zebrafish. Hence, skin cortisol levels, variations in the blood leucocyte population, as well as the expression levels of immune genes in various tissues of wild-type TU strain (Tübingen, Nüsslein-Volhard Lab) (WT) and homozygous mc1r knockout zebrafish (mc1rK.O.) stimulated with LPS was carried out. Results show that the mc1rK.O. mutant fish produce lower levels of cortisol in mucus and fewer macrophages in blood after exposure to LPS compared to control fish. Regarding the expression of immune genes, mutant fish show a significant increase in the expression of the anti-inflammatory interleukin il10. These results suggest that the mc1rK.O. mutant fish may follow an alternative mechanism among the immune responses, where macrophages seem to have an anti-inflammatory function, attenuating nitric oxide (NO) production and providing an advantage through the mitigation of excessive or strong inflammatory reactions. Nonetheless, a lower number of this cell type could imply a reduced phagocytic potential in the face of an infection. At the same time, lower cortisol levels in the mc1rK.O. mutant fish could be an advantage as for the lower susceptibility to stress and the physiological and metabolic consequences of high cortisol levels.


Assuntos
Receptor Tipo 1 de Melanocortina , Peixe-Zebra , Animais , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Hidrocortisona , Lipopolissacarídeos , Melanocortinas/genética , Imunidade , Anti-Inflamatórios , Mutação , Mamíferos/metabolismo
7.
CNS Spectr ; 27(3): 281-289, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33455598

RESUMO

Hypoactive sexual desire disorder (HSDD) is a common female sexual dysfunction and is estimated to affect approximately 10% of women in the United States. It has been suggested that HSDD is associated with an imbalance of hormone and neurotransmitter levels in the brain, resulting in decreased excitation, increased inhibition, or a combination of both. Evidence suggests neurotransmitters, including dopamine (DA), norepinephrine, and serotonin, as well as hormones such as estradiol and testosterone, contribute to female sexual desire and response. Current treatments for HSDD include psychotherapy, and two US Food and Drug Administration-approved medications for premenopausal women: flibanserin, a serotonin mixed agonist and antagonist, and bremelanotide, a melanocortin receptor (MCR) agonist. Melanocortins are endogenous neuropeptides associated with the excitatory pathway of the female sexual response system. MCRs are found throughout the body, including the brain. Bremelanotide is an MCR agonist that nonselectively activates several of the receptor subtypes, of which subtype 4 (MC4R) is the most relevant at therapeutic doses. MC4R is predominantly expressed in the medial preoptic area (mPOA) of the hypothalamus in the brain, and is important for female sexual function. Animal studies suggest that bremelanotide may affect female sexual desire by activating presynaptic MC4Rs on neurons in the mPOA of the hypothalamus, leading to increased release of DA, an excitatory neurotransmitter that increases sexual desire. This review presents what is known about the mechanism of action of bremelanotide in the context of treating HSDD.


Assuntos
Serotonina , Disfunções Sexuais Psicogênicas , Animais , Dopamina/metabolismo , Feminino , Humanos , Neurotransmissores/uso terapêutico , Peptídeos Cíclicos , Serotonina/metabolismo , Disfunções Sexuais Psicogênicas/tratamento farmacológico , alfa-MSH/uso terapêutico
8.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499274

RESUMO

The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.


Assuntos
Disfunção da Glândula Tarsal , Glândulas Tarsais , Animais , Camundongos , Lipídeos , Disfunção da Glândula Tarsal/metabolismo , Glândulas Tarsais/metabolismo , Melanocortinas/metabolismo , Lágrimas/metabolismo , Técnicas de Cultura de Tecidos , Sistemas Microfisiológicos
9.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955479

RESUMO

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo
10.
J Biol Chem ; 295(48): 16370-16379, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32943551

RESUMO

The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein-coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein-coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Proteínas Adaptadoras de Transdução de Sinal/genética , Membrana Celular/genética , Células HEK293 , Humanos , Domínios Proteicos
11.
J Recept Signal Transduct Res ; 41(5): 425-433, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32938265

RESUMO

PURPOSE: To compare the binding and agonistic activity of Acthar® Gel and synthetic melanocortin receptor (MCR) agonists and examine how the activity of select agonists affects the in vivo production of corticosterone. MATERIALS AND METHODS: In vitro binding was determined using concentration-dependent displacement of the ligand [125I]Nle4, D-Phe7-α-melanocyte-stimulating hormone (α-MSH) on cells expressing MC1R, MC3R, MC4R, or MC5R. Functional activity was determined using a time-resolved fluorescence cyclic adenosine monophosphate (cAMP) assay in cells expressing MC1R, MC2R, MC3R, MC4R, or MC5R. In vivo corticosterone analyses were performed by measuring plasma corticosterone levels in Sprague Dawley rats. RESULTS: Acthar Gel and synthetic MCR agonists exhibited the highest binding at MC1R, lowest binding at MC5R, and moderate binding at MC3R and MC4R. Acthar Gel stimulated the production of cAMP in all 5 MCR-expressing cell lines, with MC2R displaying the lowest level of full agonist activity, 3-, 6.6-, and 10-fold lower than MC1R, MC3R, and MC4R, respectively. Acthar Gel was a partial agonist at MC5R. The synthetic MCR agonists induced full activity at all 5 MCRs, with the exception of α-MSH having no activity at MC2R. Acthar Gel treatment had less of an impact on in vivo production of corticosterone compared with synthetic ACTH1-24 depot. CONCLUSIONS: Acthar Gel bound to and activated each MCR tested in this study, with partial agonist activity at MC5R and the lowest level of full agonist activity at MC2R, which distinguished it from synthetic MCR agonists. The minimal activity of Acthar Gel at MC2R corresponded to lower endogenous corticosteroid production.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Corticosterona/metabolismo , Receptores de Melanocortina/metabolismo , alfa-MSH/metabolismo , Animais , Ligantes , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/classificação
12.
Cell Mol Life Sci ; 77(19): 3831-3840, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32248247

RESUMO

Melanocortin hormone system plays a key role in maintaining the homeostasis of our body via their neuro-immune-endocrine activities and regulates a diverse array of physiological functions, including melanogenesis, inflammation, immunomodulation, adrenocortical steroidogenesis, hemodynamics, natriuresis, energy homeostasis, sexual function, and exocrine secretion. The pathobiologic actions of all melanocortins are conveyed by melanocortin receptors. As the last melanocortin receptor to be cloned and characterized, melanocortin receptor 5 (MC5R) is widely expressed in both central nervous system and a number of peripheral organ systems in man. However, the exact effect of the MC5R mediated melanocortinergic signaling remains largely uncertain. Owing to the recent advances in developing highly selective peptidomimetic agonists and antagonists of MC5R and also to studies in MC5R knockout animals, our understanding of MC5R pathobiology has been greatly expanded and strengthened. Evidence suggests that MC5R plays a key role in governing immune reaction and inflammatory response, and is pivotal for the regulation of sexual behavior, thermoregulation, and exocrine secretion, like sebogenesis, lacrimal secretion and release of sex pheromones. As such, recent translational efforts have focused on developing novel sebum-suppressive therapies for seborrhoea and acne vulgaris based on antagonizing MC5R. Conversely, selective MC5R agonists have demonstrated promising beneficial effects in immune-mediated diseases, metabolic endocrinopathies and other disease conditions, such as glomerular diseases and dry eyes, skin and mouth. Thus, MC5R-mediated signaling is essential for health. Therapeutic targeting of MC5R represents a promising and pragmatic therapeutic strategy for diverse diseases. This review article delineates the biophysiology of MC5R-mediated biophysiology of the melanocortin hormone system, discusses the existing data on MC5R-targeted therapy in experimental disease models, and envisages the translational potential for treating human diseases.


Assuntos
Receptores de Melanocortina/metabolismo , Transdução de Sinais , Acne Vulgar/tratamento farmacológico , Acne Vulgar/metabolismo , Acne Vulgar/patologia , Animais , Sistema Nervoso Central/metabolismo , Dermatite Seborreica/tratamento farmacológico , Dermatite Seborreica/metabolismo , Dermatite Seborreica/patologia , Humanos , Melanocortinas/metabolismo , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Uveíte/tratamento farmacológico , Uveíte/metabolismo , Uveíte/patologia
13.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684847

RESUMO

Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer's disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats' performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Lobo Frontal/metabolismo , Hipotálamo/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Doenças Neurodegenerativas/metabolismo , Ratos , Ratos Endogâmicos F344
14.
Gen Comp Endocrinol ; 285: 113291, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568758

RESUMO

Melanocortin-1 receptor (MC1R) has important roles in regulating pigmentation and inflammation. Melanocortin receptor accessory protein 2 (MRAP2) modulates trafficking, ligand binding, and signaling of mammalian melanocortin receptors. However, the effect of MRAP2 on fish MC1R has not been extensively studied. Herein, we cloned the orange-spotted grouper (Epinephelus coioides) mc1r, which had a 972 bp open reading frame encoding a putative protein of 323 amino acids. Grouper mc1r was mainly expressed in the brain, skin, testis, spleen, head kidney, and kidney. EcoMC1R showed high constitutive activities in both Gs-cAMP and ERK1/2 pathways, which could be differentially modulated by grouper MRAP2 (EcoMRAP2). Three agonists, including α-melanocyte-stimulating hormone (MSH), ß-MSH, and ACTH, could bind to EcoMC1R and dose-dependently increase intracellular cAMP production. EcoMRAP2 had no effect on the IC50 in binding assay or EC50 in cAMP assay; however, it dose-dependently decreased the cell surface expression and maximal response to the three agonists. EcoMRAP2 increased basal ERK1/2 activation but did not alter α-MSH-stimulated ERK1/2 activation. This study extends the knowledge base of fish MC1R pharmacology and its regulation by MRAP2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bass/metabolismo , Proteínas de Peixes/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/genética , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Filogenia , Receptor Tipo 1 de Melanocortina/química , Receptor Tipo 1 de Melanocortina/genética , Transdução de Sinais/efeitos dos fármacos
15.
BMC Nephrol ; 21(1): 226, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539845

RESUMO

BACKGROUND: Focal segmental glomerulosclerosis (FSGS) causes renal fibrosis and may lead to kidney failure. FSGS and its common complication, proteinuria, are challenging to treat. Corticosteroids are ineffective in many patients with FSGS, and alternative treatments often yield suboptimal responses. Repository corticotropin injection (RCI; Acthar® Gel), a naturally sourced complex mixture of purified adrenocorticotropic hormone analogs and other pituitary peptides, may have beneficial effects on idiopathic FSGS via melanocortin receptor activation. METHODS: Two studies in a preclinical (female Sprague-Dawley rats) puromycin aminonucleoside FSGS model assessed the effect of RCI on renal function and morphology: an 8-week comparison of a single RCI dose with methylprednisolone (N = 27), and a 12-week chronic RCI dose range study (N = 34). Primary outcomes were proteinuria and renal pathology improvements for measures of renal fibrosis, tubular damage, glomerular injury, and total kidney injury score. Impact of RCI treatment was also determined by assessing urinary biomarkers for renal injury, podocyte expression of podoplanin (a biomarker for injury), podocyte effacement by electron microscopy, and histological staining for fibrosis biomarkers. RESULTS: Compared with saline treatment, RCI 30 IU/kg significantly reduced proteinuria, with a 38% reduction in peak mean urine protein levels on day 28 in the 8-week model, and RCI 10 IU/kg, 30 IU/kg, and 60 IU/kg reduced peak mean urine protein in the 12-week model by 18, 47, and 44%, respectively. RCI also showed significant dose-dependent improvements in fibrosis, interstitial inflammation, tubular injury, and glomerular changes. Total kidney injury score (calculated from histopathological evaluations) demonstrated statistically significant improvements with RCI 30 IU/kg in the 8-week study and RCI 60 IU/kg in the 12-week study. RCI treatment improved levels of urinary biomarkers of kidney injury (KIM-1 and OPN), expression of podoplanin, and podocyte morphology. RCI also reduced levels of desmin and fibrosis-associated collagen deposition staining. Methylprednisolone did not improve renal function or pathology in this model. CONCLUSIONS: These results provide evidence supporting the improvement of FSGS with RCI, which was superior to corticosteroid treatment in this experimental model. To the authors' knowledge, this is the first evidence that a drug for the treatment of FSGS supports podocyte recovery after repeated injury.


Assuntos
Corticosteroides/uso terapêutico , Hormônio Adrenocorticotrópico/administração & dosagem , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Rim/patologia , Animais , Biomarcadores/urina , Modelos Animais de Doenças , Feminino , Fibrose , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Injeções , Rim/efeitos dos fármacos , Rim/metabolismo , Glicoproteínas de Membrana/metabolismo , Podócitos/patologia , Proteinúria/prevenção & controle , Puromicina Aminonucleosídeo/farmacologia , Ratos , Ratos Sprague-Dawley
16.
BMC Musculoskelet Disord ; 21(1): 586, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867752

RESUMO

BACKGROUND: Melanocortin receptor (MCR) agonists have anti-inflammatory and immunomodulatory properties mediated by receptors expressed on cells relevant to arthritis. Repository corticotropin injection (RCI; Acthar® Gel), an MCR agonist preparation, is approved as adjunctive therapy for rheumatoid arthritis (RA), but its mechanism of action in RA is unclear. This study explored the efficacy of RCI as monotherapy or adjunctive therapy with etanercept (ETN) in an established animal model of collagen-induced arthritis (CIA). METHODS: After induction of CIA, rats (n = 10 per group) were randomized to receive subcutaneous RCI (40, 160, or 400 U/kg twice daily) alone or in combination with ETN (10 mg/kg 3 times daily), ETN alone, or vehicle (on days 13 through 19). Inflammation was assessed via changes in paw edema. Bone damage was determined by microfocal computed tomography histopathology, and immunohistochemistry. Statistical analyses were performed using a 2-way analysis of variance (ANOVA) followed by the Newman-Keuls, Dunn's, or Dunnett's multiple comparisons test or a 1-way ANOVA followed by the Dunnett's or Holm-Sidak multiple comparisons test. RESULTS: RCI administration resulted in dose-dependent decreases in ankle edema and histopathologic measures of inflammation, pannus formation, cartilage damage, bone resorption, and periosteal bone formation. RCI and ETN showed combined benefits on all parameters measured. Radiographic evidence of bone damage was significantly reduced in rats that received RCI alone or in combination with ETN. This reduction in bone density loss correlated with decreases in the number of CD68-positive macrophages and cathepsin K-positive osteoclasts within the lesions. CONCLUSIONS: As monotherapy or adjunctive therapy with ETN, RCI attenuated CIA-induced joint structural damage in rats. These data support the clinical efficacy of RCI as adjunctive therapy for patients with RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Hormônio Adrenocorticotrópico , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Colágeno , Etanercepte , Humanos , Ratos
17.
Gen Comp Endocrinol ; 277: 90-103, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905760

RESUMO

The melanocortin-3 receptor (MC3R) is known to be involved in regulation of energy homeostasis, regulating feed efficiency and nutrient partitioning in mammals. Its physiological roles in non-mammalian vertebrates, especially economically important aquaculture species, are not well understood. Channel catfish (Ictalurus punctatus) is the main freshwater aquaculture species in North America. In this study, we characterized the channel catfish MC3R. The mc3r of channel catfish encoded a putative protein (ipMC3R) of 367 amino acids. We transfected HEK293T cells with ipMC3R plasmid for functional studies. Five agonists, including adrenocorticotropin, α-melanocyte stimulating hormone (α-MSH), ß-MSH, [Nle4, D-Phe7]-α-MSH, and D-Trp8-γ-MSH, were used in the pharmacological studies. Our results showed that ipMC3R bound ß-MSH with higher affinity and D-Trp8-γ-MSH with lower affinity compared with human MC3R. All agonists could stimulate ipMC3R and increase intracellular cAMP production with sub-nanomolar potencies. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation could also be triggered by ipMC3R. The ipMC3R exhibited constitutive activities in both cAMP and ERK1/2 pathways, and Agouti-related protein served as an inverse agonist at ipMC3R, potently inhibiting the high basal cAMP level. Moreover, we showed that melanocortin receptor accessory protein 2 (MRAP2) preferentially modulated ipMC3R in cAMP production rather than ERK1/2 activation. Our study will assist further investigation of the physiological roles of the ipMC3R, especially in energy homeostasis, in channel catfish.


Assuntos
Metabolismo Energético , Homeostase , Ictaluridae/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos/genética , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Ligantes , Filogenia , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 3 de Melanocortina/genética , Análise de Sequência de DNA , Transdução de Sinais , Sintenia/genética
18.
Gen Comp Endocrinol ; 284: 113234, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398355

RESUMO

Melanocortin-4 receptor (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) play important roles in the melanocortin system, and interaction of MC4R and MRAP2 is suggested to play pivotal role in energy balance of vertebrates. Orange-spotted grouper (Epinephelus coioides) is a widely cultured marine fish with high economic value in Asia. To explore potential interaction between grouper MC4R and MRAP2, herein we cloned grouper mc4r and mrap2. Grouper mc4r consisted of a 981 bp ORF encoding a putative protein of 327 amino acids, while the grouper mrap2 consisted of a 696 bp ORF encoding a putative protein of 232 amino acids. Sequence and phylogenetic analysis revealed that the grouper MC4R and MRAP2 were highly homologous at amino acid levels to several teleost MC4Rs and MRAP2s, respectively. qRT-PCR results showed that both mc4r and mrap2 were expressed primarily in the central nervous system. In the periphery, these genes were expressed more widely in male fish. The cloned grouper MC4R was functional, exhibiting high constitutive activity in cAMP pathway, capable of binding to three peptide agonists and increasing intracellular cAMP production dose-dependently. MRAP2 significantly decreased basal and agonist-stimulated cAMP signaling. MRAP2 also increased basal ERK1/2 activation but decreased ligand-induced stimulation when expressed at high levels. These data will facilitate future investigation of these molecules in regulating diverse physiological processes in orange-spotted grouper.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bass/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/genética , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Filogenia , Receptor Tipo 4 de Melanocortina/genética
19.
J Neuroinflammation ; 15(1): 106, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642894

RESUMO

BACKGROUND: Neuroinflammation plays an important role in the pathogenesis of intracerebral hemorrhage (ICH)-induced secondary brain injury. Activation of melanocortin receptor 4 (MC4R) has been shown to elicit anti-inflammatory effects in many diseases. The objective of this study was to explore the role of MC4R activation on neuroinflammation in a mouse ICH model and to investigate the contribution of adenosine monophosphate-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway in MC4R-mediated protection. METHODS: Adult male CD1 mice (n = 189) were subjected to intrastriatal injection of bacterial collagenase or sham surgery. The selective MC4R agonist RO27-3225 was administered by intraperitoneal injection at 1 h after collagenase injection. The specific MC4R antagonist HS024 and selective AMPK inhibitor dorsomorphin were administered prior to RO27-3225 treatment to elucidate potential mechanism. Short- and long-term neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. RESULTS: The expression of MC4R and p-AMPK increased after ICH with a peak at 24 h. MC4R was expressed by microglia, neurons, and astrocytes. Activation of MC4R with RO27-3225 improved the neurobehavioral functions, decreased brain edema, and suppressed microglia/macrophage activation and neutrophil infiltration after ICH. RO27-3225 administration increased the expression of MC4R and p-AMPK while decreasing p-JNK, p-p38 MAPK, TNF-α, and IL-1ß expression, which was reversed with inhibition of MC4R and AMPK. CONCLUSIONS: Our study demonstrated that activation of MC4R with RO27-3225 attenuated neuroinflammation through AMPK-dependent inhibition of JNK and p38 MAPK signaling pathway, thereby reducing brain edema and improving neurobehavioral functions after experimental ICH in mice. Therefore, the activation of MC4R with RO27-3225 may be a potential therapeutic approach for ICH management.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Peptídeos/uso terapêutico , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Encefalite/etiologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Expert Opin Emerg Drugs ; 23(4): 319-330, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507329

RESUMO

Introduction: Erectile dysfunction is an extremely frequent and extensively studied condition, currently affecting the lives of tens of millions of men around the globe. The extensive knowledge of its pathophysiology has led to the development of phosphodiesterase 5-inhibitors, which can facilitate sexual intercourse in a large number of patients. However, an ever-increasing number of patients is unresponsive to these drugs due to underlying comorbidities or previous surgery. Different molecular pathways need to be addressed to provide treatment for a larger patient population. Areas covered: In this paper, we will review the underlying molecular pathways, discuss already available treatment options and their limitations and provide an overview of the newest therapeutics in development. Centrally and peripherally acting agents will be discussed separately. Additionally, newest advances in regenerative medicine options will be discussed. Expert opinion: Even though novel drugs have not been tested in a phase III setting, several phase II clinical trial results are eagerly awaited. These newest therapeutics could be applied as monotherapy or combination therapy in the subset of patients unresponsive to traditional treatment options.


Assuntos
Disfunção Erétil/tratamento farmacológico , Animais , Apomorfina/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Humanos , Masculino , Inibidores da Fosfodiesterase 5/uso terapêutico , Vasodilatadores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA