Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Plant Biol ; 22(1): 84, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209839

RESUMO

BACKGROUND: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica, in vitro. However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta. The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta, without affecting the host crop development and yield. RESULTS: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre-Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM (P < 0. 0001). In planta assessment (in a S. hermonthica-sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass (P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis (P < 0.0001). CONCLUSIONS: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica. Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.


Assuntos
Fusarium/metabolismo , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Tricotecenos/farmacologia , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Microbiologia do Solo , Striga , Tricotecenos/metabolismo
2.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33008817

RESUMO

We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.


Assuntos
Burkholderiaceae/fisiologia , Carbono/metabolismo , Solo/química , New York
3.
J Exp Bot ; 70(4): 1087-1094, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576534

RESUMO

Plants nourish rhizospheric microbes via provision of carbon substrates, and the composition of the microbiome is strongly influenced by metabolic phenomena such as niche differentiation, competitive exclusion, and cross-feeding. Despite intensive investigations of the taxonomic structure in root microbiomes, there is relatively little biochemical knowledge of the metabolic niches occupied by microbial strains in the rhizosphere. Here, we review new tools and approaches that are boosting our knowledge of the metabolic mechanisms that shape the composition of the root microbiome. New studies have elucidated biochemical pathways that mediate root colonisation and pathogen suppression, and synthetic communities are emerging as a powerful tool to understand microbe-microbe interactions. Knowledge of root exudate composition is being advanced by new metabolomics methodologies, which have highlighted that specific exudate components can inhibit pathogen growth, and that certain metabolites can recruit mutualistic strains according to substrate uptake preferences. Microbial genomics is rapidly advancing, with large collections of isolated rhizosphere strains and mutant libraries giving new insights into the metabolic mechanisms of root colonisation. Exometabolomics is emerging as a powerful methodology for directly observing microbial uptake of root metabolites, and also for profiling microbial cross-feeding. Integrative studies using these resources should enable rapid advances, particularly when applied to standardised experimental set-ups and model synthetic communities.


Assuntos
Interações Microbianas , Microbiota , Plantas/metabolismo , Plantas/microbiologia , Rizosfera , Simbiose , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo
4.
J Proteome Res ; 17(11): 3877-3888, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260228

RESUMO

A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples ( n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort ( n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Neoplasias Renais/sangue , Leucina/sangue , Metaboloma , Adulto , Idoso , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cromatografia Líquida , Cisteína/análogos & derivados , Cisteína/sangue , Análise Discriminante , Feminino , Glutationa/análogos & derivados , Glutationa/sangue , Células HEK293 , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Leucina/análogos & derivados , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenilalanina/análogos & derivados , Fenilalanina/sangue , Projetos Piloto , Espectrometria de Massas em Tandem
5.
J Ind Microbiol Biotechnol ; 44(3): 413-417, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28160205

RESUMO

Heterologous protein production in the yeast Pichia pastoris can be limited by biological responses to high expression levels; the unfolded protein response (UPR) is a key determinant of the success of protein production in this organism. Here, we used untargeted NMR metabolic profiling (metabolomics) of a number of different recombinant strains, carried out in a miniaturized format suitable for screening-level experiments. We identified a number of metabolites (from both cell extracts and supernatants) which correlated well with UPR-relevant gene transcripts, and so could be potential biomarkers for future high-throughput screening of large numbers of P. pastoris clones.


Assuntos
Metabolômica , Pichia/genética , Proteínas Recombinantes/biossíntese , Ensaios de Triagem em Larga Escala , Microrganismos Geneticamente Modificados , Pichia/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/genética
6.
Plant Cell Environ ; 39(10): 2172-84, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27239727

RESUMO

The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of P. syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, ß-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.


Assuntos
Interações Hospedeiro-Patógeno , Phaseolus/microbiologia , Pseudomonas syringae/fisiologia , Metabolômica , Phaseolus/imunologia , Phaseolus/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
7.
J Biol Chem ; 288(21): 15098-109, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572517

RESUMO

Metabolic footprinting of supernatants has been proposed as a tool for assigning gene function. We used NMR spectroscopy to measure the exometabolome of 86 single-gene transposon insertion mutant strains (mutants from central carbon metabolism and regulatory mutants) of the opportunistic pathogen Pseudomonas aeruginosa, grown on a medium designed to represent the nutritional content of cystic fibrosis sputum. Functionally related genes had similar metabolic profiles. E.g. for two-component system mutants, the cognate response regulator and sensor kinase genes clustered tightly together. Some strains had metabolic phenotypes (metabotypes) that could be related to the known gene function. E.g. pyruvate dehydrogenase mutants accumulated large amounts of pyruvate in the medium. In other cases, the metabolic phenotypes were not easily interpretable. The rpoN mutant, which lacks the alternative σ factor RpoN (σ(54)), accumulated high levels of gluconate in the medium. In addition, endometabolome profiling of intracellular metabolites identified a number of systemic metabolic changes. We linked this to indirect regulation of the catabolite repression protein Crc via the non-coding RNA crcZ and found that a crcZ (but not crc) mutant also shared the high-gluconate phenotype. We profiled an additional set of relevant metabolic enzymes and transporters, including Crc targets, and showed that the Crc-regulated edd mutant (gluconate-6-phosphate dehydratase) had similar gluconate levels as the rpoN mutant. Finally, a set of clinical isolates showed patient- and random amplification of polymorphic DNA (RAPD) type-specific differences in gluconate production, which were associated significantly with resistance across four antibiotics (tobramycin, ciprofloxacin, aztreonam, and imipenem), indicating that this has potential clinical relevance.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Gluconatos/metabolismo , Metaboloma , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Fibrose Cística/patologia , Farmacorresistência Bacteriana/fisiologia , Feminino , Humanos , Masculino , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Técnica de Amplificação ao Acaso de DNA Polimórfico
8.
Exp Parasitol ; 145: 80-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25102435

RESUMO

Multidrug resistant Plasmodium falciparum is the major health problem in the tropics. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate antimalarial activities of Garcinia mangostana Linn. crude ethanolic extract including its bioactive compounds as well as the metabolic footprinting of P. falciparum following exposure to G. mangostana Linn. extract. The median (range) IC50 (concentration that inhibits parasite growth by 50%) values of ethanolic extract of G. mangostana Linn., α-mangostin, ß-mangostin, gartanin, 9-hydroxycarbaxathone, artesunate, and mefloquine for 3D7 vs K1 P. falciparum clones were 12.6 (10.5-13.2) vs 4.5 (3.5-6.3) µg/ml, 7.3 (7.1-8.5) vs 5.0 (3.7-5.9) µg/ml, 47.3 (46.8-54.0) vs 35.0 (30.0-43.7) µg/ml, 9.2 (8.1-11.9) vs 6.8 (6.2-9.1) µg/ml, 0.6 (0.4-0.8) vs 0.5 (0.4-0.7) µg/ml, 0.4 (0.2-1.2) vs 0.7 (0.4-1.0)ng/ml, and 5.0 (4.2-5.0) vs 2.7 (2.5-4.6) ng/ml, respectively. The action of G. mangostana Linn. started at 12 h of exposure, suggesting that the stage of its action is trophozoite. The 12-h exposure time was used as a suitable exposure time for further analysis of P. falciparum footprinting. G. mangostana Linn. extract was found to target several metabolic pathways particularly glucose and TCA metabolisms. The malate was not detected in culture medium of the exposed parasite, which may indirectly imply that the action of G. mangostana Linn. is through interruption of TCA metabolism.


Assuntos
Antimaláricos/farmacologia , Garcinia mangostana/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Artemisininas/farmacologia , Artesunato , Resistência a Múltiplos Medicamentos , Glucose/metabolismo , Concentração Inibidora 50 , Mefloquina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Plasmodium falciparum/metabolismo , Xantonas/farmacologia
9.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012875

RESUMO

Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.

10.
Metabolites ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35050158

RESUMO

Chronic respiratory diseases such as asthma are highly prevalent in industrialized countries. As cases are expected to rise, there is a growing demand for alternative therapies. Our recent research on the potential benefits of probiotics suggests that they could prevent and reduce the symptoms of many diseases by modulating the host immune system with secreted metabolites. This article presents the first steps of the research that led us to identify the immunoregulatory bioactivity of the amino acid d-Trp reported in our previous study. Here we analyzed the cell culture metabolic footprinting of 25 commercially available probiotic strains to associate metabolic pathway activity information with their respective immune modulatory activity observed in vitro. Crude probiotic supernatant samples were processed in three different ways prior to untargeted analysis in positive and negative ionization mode by direct infusion ESI-FT-ICR-MS: protein precipitation and solid phase extraction (SPE) using HLB and CN-E sorbent cartridges. The data obtained were submitted to multivariate statistical analyses to distinguish supernatant samples into the bioactive and non-bioactive group. Pathway analysis using discriminant molecular features showed an overrepresentation of the tryptophan metabolic pathway for the bioactive supernatant class, suggesting that molecules taking part in that pathway may be involved in the immunomodulatory activity observed in vitro. This work showcases the potential of metabolomics to drive product development and novel bioactive compound discovery out of complex biological samples in a top-down manner.

11.
Metabolites ; 7(1)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216558

RESUMO

The endogenous metabolites excreted by organisms into their surrounding environment, termed the exometabolome, are important for many processes including chemical communication. In fish biology, such metabolites are also known to be informative markers of physiological status. While metabolomics is increasingly used to investigate the endogenous biochemistry of organisms, no non-targeted studies of the metabolic complexity of fish exometabolomes have been reported to date. In environmental chemistry, Chemcatcher® (Portsmouth, UK) passive samplers have been developed to sample for micro-pollutants in water. Given the importance of the fish exometabolome, we sought to evaluate the capability of Chemcatcher® samplers to capture a broad spectrum of endogenous metabolites excreted by fish and to measure these using non-targeted direct infusion mass spectrometry metabolomics. The capabilities of C18 and styrene divinylbenzene reversed-phase sulfonated (SDB-RPS) Empore™ disks for capturing non-polar and polar metabolites, respectively, were compared. Furthermore, we investigated real, complex metabolite mixtures excreted from two model fish species, rainbow trout (Oncorhynchus mykiss) and three-spined stickleback (Gasterosteus aculeatus). In total, 344 biological samples and 28 QC samples were analysed, revealing 646 and 215 m/z peaks from trout and stickleback, respectively. The measured exometabolomes were principally affected by the type of Empore™ (Hemel Hempstead, UK) disk and also by the sampling time. Many peaks were putatively annotated, including several bile acids (e.g., chenodeoxycholate, taurocholate, glycocholate, glycolithocholate, glycochenodeoxycholate, glycodeoxycholate). Collectively these observations show the ability of Chemcatcher® passive samplers to capture endogenous metabolites excreted from fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA