Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162612

RESUMO

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Assuntos
Ciclo do Carbono , Carbono , Microbiota , Microbiologia do Solo , Solo , Chile , Carbono/metabolismo , Carbono/análise , Solo/química , Fungos/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , Pradaria
2.
Environ Res ; 244: 117931, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103774

RESUMO

Arable land is facing the growing challenge of land degradation due to intensive use and this is beginning to affect global food security. However, active and passive restoration can improve soil characteristics and reshape microbial communities. Despite the increasing focus on changes in microbial communities during restoration, the mechanisms underlying how microbes drive the soil quality index (SQI) in arable land restoration remain unclear. In this study, we selected conventional farmland (CF, heavily intensified) and two restoration strategies (AR, artificial restoration; NR, natural restoration), with the same context (including soil texture, climate, etc.), and measured the microbial indicators over 2 years to investigate the mechanisms driving SQI improvement on restored arable land. The AR and NR treatments resulted in a 50% and 58% increase in SQI, respectively, compared to CF as soil nutrient levels increased, resulting in higher microbial biomasses and enzyme activities. Microbial abundance on the AR land was approximately two times greater than on the NR land due to the introduction of legumes. Bacterial diversity declined, while fungi developed in a more diverse direction under the restoration strategies. The AR and NR areas were mainly enriched with rhizobium (Microvirga, Bradyrhizobium), which contribute to healthy plant growth. The pathogenic fungi (Gibberella, Fusarium, Volutella) were more abundant in the CF area and the plant pathogen guild was about five times higher in the restored areas. Following arable land restoration, microbial life history strategies shifted from r-to K-strategists due to the higher proportion of recalcitrant SOC (DOC/SOC decreased by 18%-30%). The altered microbial community in the restored areas created new levels of functionality, with a 2.6%-4.3% decrease in bacterial energy metabolism (oxidative phosphorylation, C fixation, and N metabolism decreased by 7%, 4%, and 6%, respectively). Structural equation modelling suggested that restoration strategy affected SQI either directly by increasing total soil nutrient levels or indirectly by altering the microbial community and that fungal community composition and bacterial diversity made the largest contributions to SQI. These results provided new insights into soil quality improvement from a microbial perspective and can help guide future arable land restoration.


Assuntos
Micobioma , Solo , Bactérias/genética , Plantas , Biomassa , Fungos , Microbiologia do Solo
3.
Ecotoxicol Environ Saf ; 269: 115807, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091673

RESUMO

Plastics have revolutionised human industries, thanks to their versatility and durability. However, their extensive use, coupled with inadequate waste disposal, has resulted in plastic becoming ubiquitous in every environmental compartment, posing potential risks to the economy, human health and the environment. Additionally, under natural conditions, plastic waste breaks down into microplastics (MPs<5 mm). The increasing quantity of MPs exerts a significant burden on the soil environment, particularly in agroecosystems, presenting a new stressor for soil-dwelling organisms. In this review, we delve into the effects of MP pollution on soil ecosystems, with a specific attention to (a) MP transport to soils, (b) potential changes of MPs under environmental conditions, (c) and their interaction with the physical, chemical and biological components of the soil. We aim to shed light on the alterations in the distribution, activity, physiology and growth of soil flora, fauna and microorganisms in response to MPs, offering an ecotoxicological perspective for environmental risk assessment of plastics. The effects of MPs are strongly influenced by their intrinsic traits, including polymer type, shape, size and abundance. By exploring the multifaceted interactions between MPs and the soil environment, we provide critical insights into the consequences of plastic contamination. Despite the growing body of research, there remain substantial knowledge gaps regarding the long-term impact of MPs on the soil. Our work underscores the importance of continued research efforts and the adoption of standardised approaches to address plastic pollution and ensure a sustainable future for our planet.


Assuntos
Ecossistema , Solo , Humanos , Plásticos/química , Monitoramento Ambiental , Poluição Ambiental/efeitos adversos
4.
J Environ Manage ; 356: 120574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520862

RESUMO

The resource quantity and elemental stoichiometry play pivotal roles in shaping belowground biodiversity. However, a significant knowledge gap remains regarding the influence of different plant communities established through monoculture plantations on soil fungi and bacteria's taxonomic and functional dynamics. This study aimed to elucidate the mechanisms underlying the regulation and adaptation of microbial communities at the taxonomic and functional levels in response to communities formed over 34 years through monoculture plantations of coniferous species (Japanese larch, Armand pine, and Chinese pine), deciduous forest species (Katsura), and natural shrubland species (Asian hazel and Liaotung oak) in the temperate climate. The taxonomic and functional classifications of fungi and bacteria were examined for the mineral topsoil (0-10 cm) using MiSeq-sequencing and annotation tools of microorganisms (FAPROTAX and Funguild). Soil bacterial (6.52 ± 0.15) and fungal (4.46 ± 0.12) OTUs' diversity and richness (5.83*103±100 and 1.12*103±46.4, respectively) were higher in the Katsura plantation compared to Armand pine and Chinese pine. This difference was attributed to low soil DOC/OP (24) and DON/OP (11) ratios in the Katsura, indicating that phosphorus availability increased microbial community diversity. The Chinese pine plantation exhibited low functional diversity (3.34 ± 0.04) and richness (45.2 ± 0.41) in bacterial and fungal communities (diversity 3.16 ± 0.15 and richness 56.8 ± 3.13), which could be attributed to the high C/N ratio (25) of litter. These findings suggested that ecological stoichiometry, such as of enzyme, litter C/N, soil DOC/DOP, and DON/DOP ratios, was a sign of the decoupling of soil microorganisms at the genetic and functional levels to land restoration by plantations. It was found that the stoichiometric ratios of plant biomass served as indicators of microbial functions, whereas the stoichiometric ratios of available nutrients in soil regulated microbial genetic diversity. Therefore, nutrient stoichiometry could serve as a strong predictor of microbial diversity and composition during forest restoration.


Assuntos
Pinus , Microbiologia do Solo , Florestas , Biodiversidade , Solo , Bactérias/genética , Nutrientes
5.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687739

RESUMO

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Assuntos
COVID-19/microbiologia , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/genética , Imunidade/fisiologia , Isoleucina/biossíntese , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , SARS-CoV-2 , Índice de Gravidade de Doença
6.
BMC Med ; 21(1): 264, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468867

RESUMO

BACKGROUND: Since the coronavirus disease 2019 (COVID-19) outbreak, many COVID-19 variants have emerged, causing several waves of pandemics and many infections. Long COVID-19, or long-term sequelae after recovery from COVID-19, has aroused worldwide concern because it reduces patient quality of life after rehabilitation. We aimed to characterize the functional differential profile of the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. METHODS: We prospectively collected oral, fecal, and serum samples from 983 antibiotic-naïve patients with mild COVID-19 and performed a 3-month follow-up postdischarge. Forty-five fecal and saliva samples, and 25 paired serum samples were collected from patients with gastrointestinal symptoms of long COVID-19 at follow-up and from healthy controls, respectively. Eight fecal and saliva samples were collected without gastrointestinal symptoms of long COVID-19 at follow-up. Shotgun metagenomic sequencing of fecal samples and 2bRAD-M sequencing of saliva samples were performed on these paired samples. Two published COVID-19 gut microbiota cohorts were analyzed for comparison. Paired serum samples were analyzed using widely targeted metabolomics. RESULTS: Mild COVID-19 patients without gastrointestinal symptoms of long COVID-19 showed little difference in the gut and oral microbiota during hospitalization and at follow-up from healthy controls. The baseline and 3-month samples collected from patients with gastrointestinal symptoms associated with long COVID-19 showed significant differences, and ectopic colonization of the oral cavity by gut microbes including 27 common differentially abundant genera in the Proteobacteria phylum, was observed at the 3-month timepoint. Some of these bacteria, including Neisseria, Lautropia, and Agrobacterium, were highly related to differentially expressed serum metabolites with potential toxicity, such as 4-chlorophenylacetic acid, 5-sulfoxymethylfurfural, and estradiol valerate. CONCLUSIONS: Our study characterized the changes in and correlations between the oral and gut microbiomes and serum metabolites in patients with gastrointestinal symptoms associated with long COVID-19. Additionally, our findings reveal that ectopically colonized bacteria from the gut to the oral cavity could exist in long COVID-19 patients with gastrointestinal symptoms, with a strong correlation to some potential harmful metabolites in serum.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Assistência ao Convalescente , Qualidade de Vida , SARS-CoV-2 , Alta do Paciente , Fezes/microbiologia , Bactérias/genética , RNA Ribossômico 16S
7.
Plant Cell Environ ; 46(12): 3919-3932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675977

RESUMO

Traditionally, fine roots were grouped using arbitrary size categories, rarely capturing the heterogeneity in physiology, morphology and functionality among different fine root orders. Fine roots with different functional roles are rarely separated in microbiome-focused studies and may result in confounding microbial signals and host-filtering across different root microbiome compartments. Using a 26-year-old common garden, we sampled fine roots from four temperate tree species that varied in root morphology and sorted them into absorptive and transportive fine roots. The rhizoplane and rhizosphere were characterized using 16S rRNA gene and internal transcribed spacer region amplicon sequencing and shotgun metagenomics for the rhizoplane to identify potential microbial functions. Fine roots were subject to metabolomics to spatially characterize resource availability. Both fungi and bacteria differed according to root functional type. We observed additional differences between the bacterial rhizoplane and rhizosphere compartments for absorptive but not transportive fine roots. Rhizoplane bacteria, as well as the root metabolome and potential microbial functions, differed between absorptive and transportive fine roots, but not the rhizosphere bacteria. Functional differences were driven by sugar transport, peptidases and urea transport. Our data highlights the importance of root function when examining root-microbial relationships, emphasizing different host selective pressures imparted on different root microbiome compartments.


Assuntos
Bactérias , Raízes de Plantas , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Rizosfera , Fungos , Microbiologia do Solo
8.
Environ Sci Technol ; 57(4): 1828-1836, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36637413

RESUMO

Global climate changes have increased the duration and frequency of river flow interruption, affecting the physical and community structure of benthic biofilms. However, the dynamic responses of biofilm metabolism during the dry-wet transition remain poorly understood. Herein, the dynamic changes in biofilm metabolic activities were investigated through mesocosm experiments under short-term (25 day) and long-term drought (90 day), followed by a 20 day rewetting. The biofilm ecosystem metabolism, as measured by gross primary production and community respiration, was significantly inhibited and turned heterotrophic during the desiccation phase and then recovered, becoming autotrophic during the rewetting period regardless of the desiccation periods due to the high resilience of the autotrophic community. However, long-term drought decreased the recovery rate of the ecosystem metabolism and also caused irreparable damage to the biofilm carbon metabolism, measured using Biolog Eco Plates. Specifically, the recovery of the total carbon metabolic activity is related to the specific carbon source utilized by biofilm microorganisms, such as polymers, carbohydrates, and carboxylic acids. However, the divergent changes of amino acids caused the failure of the total carbon metabolism in long-term drought treatments to recover to the control level even after 20 days of rewetting. This research provides direct evidence that the increased duration of non-flow periods affects biofilm-mediated carbon biogeochemical processes.


Assuntos
Dessecação , Ecossistema , Biofilmes , Mudança Climática , Rios , Carbono
9.
J Environ Manage ; 311: 114891, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35305367

RESUMO

Discharge of treated sewage effluent to rivers can degrade aquatic ecosystem quality, interacting with multiple stressors in the wider catchment. In predominantly rural catchments, the river reach influence of point source effluents is unknown relative to complex background pressures. We examined water column, sediment and biofilm biogeochemical water quality parameters along river transects (200 m upstream to 1 km downstream) during summer at five wastewater treatment works (WWTW) in Scotland. Treated sewage effluent (subset, n = 3) pollutant concentrations varied between sites. Downstream concentration profiles of water and sediment biogeochemical parameters showed complex spatial changes. A hypothesised point source signature of elevated concentrations of pollution immediately downstream of WWTW then a decaying pollution 'plume' did not commonly occur. Instead, elevated soluble reactive phosphorus (SRP), ammonium and coliforms (maximum 0.23 mgP/l, 0.33 mgN/l and >2 × 106 MPN/100 ml) occurred immediately downstream of two WWTW, whereas some downstream pollutant concentrations decreased. Microbial substrate respiration responses only differed 1 km downstream. Significantly greater concentrations of sediment metal occurred >500 m downstream, likely due to the redeposition of historic contaminated sediments. Significantly lowered chlorophyll-a downstream of one WWTW coincided with elevated metals, despite water SRP and sediment P increases. Overall, stress caused to microbes and algae by effluent contaminants outweighed the subsidy effect of WWTW nutrients. We observed variable effluent flows to the rivers limited localised pollution downstream of WWTW and overall influence of arable land cover on river water quality. Together, this challenges views of consistently discharging point sources impacting low dilution sensitive rivers in summer contrasting with 'diffuse' sources. Thus, river water column and benthic compartments are altered at varying scales by point source effluents in combination with rural catchment pollution sources, both discrete (e.g. farmyards and septic tanks) and diffuse.

10.
Arch Microbiol ; 203(6): 3605-3613, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33973044

RESUMO

Understanding the functions carried out by rhizosphere microbiomes will further explore their importance in biotechnological improvement and agricultural sustainability. This study presents one of the foremost attempts to understand the functional diversity of the rhizosphere microbiome in mono-cropping and crop rotation farming sites using shotgun metagenomic techniques. We hypothesized that the functional diversity would vary in the cropping sites and more abundant in the rotational cropping site. Hence, we carried out complete DNA extraction from the bulk and rhizospheric soils associated with maize plant cultivated on the mono-cropping farm (LT and LTc) and the crop rotation farm (VD and VDc), respectively, and sequenced employing shotgun approach. Using the SEED subsystem, our result revealed that a total of 24 functional categories dominated the rotational cropping site, while four functional categories dominated the mono-cropping sites. Alpha diversity assessment showed that no significant difference (p > 0.05) was observed across the cropping sites, while beta diversity assessment revealed a significant difference. Going by the high abundance of functional groups observed in the samples from the crop rotational site, it is evident that cropping systems influenced the functions of soil microbiomes. Worthy of note is the high abundance of unknown functions associated with these maize rhizosphere microbiomes. This is an indication that there are still some under-investigated functional genes associated with the maize rhizosphere microbiome. It is, therefore, imperative that further studies explore these functional genes for their agricultural and biotechnological potentials.


Assuntos
Produtos Agrícolas/microbiologia , Microbiota , Rizosfera , Microbiologia do Solo , Zea mays/microbiologia , Metagenômica
11.
Ecotoxicology ; 30(1): 17-30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070239

RESUMO

Soil cadmium (Cd) pollution resulting from anthropogenic activities has become a major concern for microbial and biochemical functions that are critical for soil quality and ecosystem sustainability. Organic amendments can reduce Cd toxicity to the microbial community and enzymatic activity in Cd-polluted soils and thus would increase the ecological dose (ED) values. However, there has been less focus on the effect of organic amendments on microbial and biochemical responses to Cd toxicity in non-calcareous soils using the concept ED. The aim of this study was to assess the impact of compost application on microbial activity, microbial biomass, turnover rates of carbon and nitrogen, and enzymatic activities as the key ecological functions in a non-calcareous soil spiked with different Cd concentrations (0-200 mg kg-1). Results showed that soil amendment with compost decreased Cd availability by 48-76%, depending on the total soil Cd content. The application of compost reduced the negative influence of Cd eco-toxicity on most soil microbial and biochemical functions by 20-122%, depending on the Cd level and the assay itself. The ED values, derived from the sigmoidal dose-response and kinetic models, were 1.10- to 2.24-fold higher in the compost-amended soils than the unamended control soils at all Cd levels. In conclusion, the potential risks associated with high levels of Cd pollution can be alleviated for microbial and biochemical indicators of soil quality/health with application of 2500 kg ha-1 compost as a cost-effective source of organic matter to non-calcareous soils. The findings would have some useful implications for organic matter-limited non-calcareous soils polluted with Cd.


Assuntos
Cádmio/análise , Compostagem , Poluentes do Solo/análise , Agricultura , Cádmio/toxicidade , Solo , Poluentes do Solo/toxicidade
12.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303548

RESUMO

Humans have used high salinity for the production of bean-based fermented foods over thousands of years. Although high salinity can inhibit the growth of harmful microbes and select functional microbiota in an open environment, it also affects fermentation efficiency of bean-based fermented foods and has a negative impact on people's health. Therefore, it is imperative to develop novel defined starter cultures for reduced-salt fermentation in a sterile environment. Here, we explored the microbial assembly and function in the fermentation of traditional Chinese broad bean paste with 12% salinity. The results revealed that the salinity and microbial interactions together drove the dynamic of community and pointed out that five dominant genera (Staphylococcus, Bacillus, Weissella, Aspergillus, and Zygosaccharomyces) may play different key roles in different fermentation stages. Then, core species were isolated from broad bean paste, and their salinity tolerance, interactions, and metabolic characteristics were evaluated. The results provided an opportunity to validate in situ predictions through in vitro dissection of microbial assembly and function. Last, we reconstructed the synthetic microbial community with five strains (Aspergillus oryzae, Bacillus subtilis, Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii) under different salinities and realized efficient fermentation of broad bean paste for 6 weeks in a sterile environment with 6% salinity. In general, this work provided a bottom-up approach for the development of a simplified microbial community model with desired functions to improve the fermentation efficiency of bean-based fermented foods by deconstructing and reconstructing the microbial structure and function.IMPORTANCE Humans have mastered high-salinity fermentation techniques for bean-based fermented product preparation over thousands of years. High salinity was used to select the functional microbiota and conducted food fermentation production with unique flavor. Although a high-salinity environment is beneficial for suppressing harmful microbes in the open fermentation environment, the fermentation efficiency of functional microbes is partially inhibited. Therefore, application of defined starter cultures for reduced-salt fermentation in a sterile environment is an alternative approach to improve the fermentation efficiency of bean-based fermented foods and guide the transformation of traditional industry. However, the assembly and function of self-organized microbiota in an open fermentation environment are still unclear. This study provides a comprehensive understanding of microbial function and the mechanism of community succession in a high-salinity environment during the fermentation of broad bean paste so as to reconstruct the microbial community and realize efficient fermentation of broad bean paste in a sterile environment.


Assuntos
Fermentação , Microbiologia de Alimentos/métodos , Microbiota/fisiologia , Salinidade , Vicia faba/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Modelos Biológicos
13.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737352

RESUMO

Climate change is predicted to alter precipitation and drought patterns, which has become a global concern as evidence accumulates that it will affect ecosystem services. Disentangling the ability of soil multifunctionality to withstand this stress (multifunctionality resistance) is a crucial topic for assessing the stability and adaptability of agroecosystems. In this study, we explored the effects of nutrient addition on multifunctionality resistance to drying-wetting cycles and evaluated the importance of microbial functional capacity (characterized by the abundances of genes involved in carbon, nitrogen and phosphorus cycles) for this resistance. The multifunctionality of soils treated with nitrogen (N) and straw showed a higher resistance to drying-wetting cycles than did nonamended soils. Microbial functional capacity displayed a positive linear relationship with multifunctionality resistance. Random forest analysis showed that the abundances of the archeal amoA (associated with nitrification) and nosZ and narG (denitrification) genes were major predictors of multifunctionality resistance in soils without straw addition. In contrast, major predictors of multifunctionality resistance in straw amended soils were the abundances of the GH51 (xylan degradation) and fungcbhIF (cellulose degradation) genes. Structural equation modeling further demonstrated the large direct contribution of carbon (C) and N cycling-related gene abundances to multifunctionality resistance. The modeling further elucidated the positive effects of microbial functional capacity on this resistance, which was mediated potentially by a high soil fungus/bacterium ratio, dissolved organic C content, and low pH. The present work suggests that nutrient management of agroecosystems can buffer negative impacts on ecosystem functioning caused by a climate change-associated increase in drying-wetting cycles via enriching functional capacity of microbial communities.IMPORTANCE Current climate trends indicate an increasing frequency of drying-wetting cycles. Such cycles are severe environmental perturbations and have received an enormous amount of attention. Prediction of ecosystem's stability and adaptability requires a better mechanistic understanding of the responses of microbially mediated C and nutrient cycling processes to external disturbance. Assessment of this stability and adaptability further need to disentangle the relationships between functional capacity of soil microbial communities and the resistance of multifunctionality. Study of the physiological responses and community reorganization of soil microbes in response to stresses requires large investments of resources that vary with the management history of the system. Our study provides evidence that nutrient managements on agroecosystems can be expected to buffer the impacts of progressive climate change on ecosystem functioning by enhancing the functional capacity of soil microbial communities, which can serve as a basis for field studies.


Assuntos
Mudança Climática , Secas , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Carbono , China , Desnitrificação , Ecossistema , Fungos/genética , Fungos/fisiologia , Genes Bacterianos/genética , Microbiota , Nitrificação , Fósforo
14.
Ecotoxicol Environ Saf ; 168: 221-229, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30388540

RESUMO

Salinity has been proposed to increase the mobility and availability of heavy metals, with a potentially significant consequence for greater metal toxicity. However, the interactive effect of salinity and metal pollution on soil microbial properties and functions is still unknown. This investigation was performed to examine the response of several soil microbial properties and processes to the combined salinity and cadmium (Cd) toxicity in a clay loam soil amended with plant residue. The NaCl salt (0, 32.5 and 78.3 mM NaCl kg-1 soil), Cd (0 and 30 mg kg-1 soil) and alfalfa residue (0 and 1%) were added to the soil and the mixtures were incubated for 90 days under standard laboratory conditions (25 ±â€¯1 °C and 70% of water holding capacity). Similar treatments without residue addition were also included in the experimental arrangement. Salinity increased soil Cd availability and toxicity, and subsequently decreased soil microbial respiration rate, microbial biomass and enzyme activity. The negative effect of increasing salinity on soil microbial and biochemical properties was stronger in Cd-polluted than unpolluted soils and at high than low salinity levels. The declines in soil microbial attributes and enzyme activity were linearly related to the concentration of soil available Cd. Nevertheless, the negative effect of salinity was reduced with addition of alfalfa residue in Cd-polluted soils. The interactive effect of Cd and NaCl was synergistic in residue-unamended soils, but antagonistic in residue-amended soils. It is concluded that (i) the multiple stresses induced by salinity and Cd pollution may synergistically affect soil microbial processes and attributes and (ii) application of organic residues has a high potential for lowering the synergistic effect of salinity in Cd-polluted environments and improving the important microbial indicators of soil quality.


Assuntos
Cádmio/toxicidade , Salinidade , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Arilsulfatases/metabolismo , Biomassa , Catalase/metabolismo , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , Medicago sativa , Metais Pesados , Monoéster Fosfórico Hidrolases/metabolismo , Cloreto de Sódio/análise
15.
Gut Microbes ; 16(1): 2393756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39197040

RESUMO

Gut microbiota of centenarians has garnered significant attention in recent years, with most studies concentrating on the analysis of microbial composition. However, there is still limited knowledge regarding the consistent signatures of specific species and their biological functions, as well as the potential causal relationship between gut microbiota and longevity. To address this, we performed the fecal metagenomic analysis of eight longevous populations at the species and functional level, and employed the Mendelian randomization (MR) analysis to infer the causal associations between microbial taxa and longevity-related traits. We observed that several species including Eisenbergiella tayi, Methanobrevibacter smithii, Hungatella hathewayi, and Desulfovibrio fairfieldensis were consistently enriched in the gut microbiota of long-lived individuals compared to younger elderly and young adults across multiple cohorts. Analysis of microbial pathways and enzymes indicated that E. tayi plays a role in the protein N-glycosylation, while M. smithii is involved in the 3-dehydroquinate and chorismate biosynthesis. Furthermore, H. hathewayi makes a distinct contribution to the purine nucleobase degradation I pathway, potentially assisting the elderly in maintaining purine homeostasis. D. fairfieldensis contributes to the menaquinone (vitamin K2) biosynthesis, which may help prevent age-related diseases such as osteoporosis-induced fractures. According to MR results, Hungatella was significantly positively correlated with parental longevity, and Desulfovibrio also exhibited positive associations with lifespan and multiple traits related to parental longevity. Additionally, Alistipes and Akkermansia muciniphila were consistently enriched in the gut microbiota of the three largest cohorts of long-lived individuals, and MR analysis also suggests their potential causal relationships with longevity. Our findings reveal longevity-associated gut microbial signatures, which are informative for understanding the role of microbiota in regulating longevity and aging.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Longevidade , Humanos , Idoso de 80 Anos ou mais , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Feminino , Adulto , Masculino , Idoso , Adulto Jovem , Metagenômica , Pessoa de Meia-Idade , Desulfovibrio/genética , Desulfovibrio/metabolismo
16.
Microorganisms ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792786

RESUMO

In nature, the symbiotic relationship between plants and microorganisms is crucial for ecosystem balance and plant growth. This study investigates the impact of Epichloë endophytic fungi, which are exclusively present aboveground, on the rhizosphere microbial functions of the host Melica transsilvanica. Using metagenomic methods, we analyzed the differences in microbial functional groups and functional genes in the rhizosphere soil between symbiotic (EI) and non-symbiotic (EF) plants. The results reveal that the presence of Epichloë altered the community structure of carbon and nitrogen cycling-related microbial populations in the host's rhizosphere, significantly increasing the abundance of the genes (porA, porG, IDH1) involved in the rTCA cycle of the carbon fixation pathway, as well as the abundance of nxrAB genes related to nitrification in the nitrogen-cycling pathway. Furthermore, the presence of Epichloë reduces the enrichment of virulence factors in the host rhizosphere microbiome, while significantly increasing the accumulation of resistance genes against heavy metals such as Zn, Sb, and Pb. This study provides new insights into the interactions among endophytic fungi, host plants, and rhizosphere microorganisms, and offers potential applications for utilizing endophytic fungi resources to improve plant growth and soil health.

17.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593666

RESUMO

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Assuntos
Arsênio , Carbono , Microbiologia do Solo , Poluentes do Solo , Arsênio/metabolismo , Arsênio/toxicidade , Carbono/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Fósforo/metabolismo , Solo/química
18.
Environ Pollut ; 360: 124619, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067738

RESUMO

Biochar (BC) has been proven effective in promoting the production of safety food in cadmium (Cd)-polluted soil and the impact can be further enhanced through interaction with compost (CM). However, there existed unclear impacts of biochar with varying particle sizes in conjunction with compost on microbiome composition, rhizosphere functions, and soil health. Hence, in this study, two bulk-biochar derived from wood chips and pig manure were fabricated into nano-biochar using a ball-milling method. Subsequently, in a field experiment, the root-associated bacterial community and microbial functions of lettuce were evaluated in respond to Cd-contaminated soil remediated with nano/bulk-BCCM. The results showed that compared to bulk-BCCM, nano-BCCM significantly reduced the Cd concentration in the edible part of lettuce and the available Cd in the soil. Both nano-BCCM and bulk-BCCM strongly influenced the composition of bacterial communities in the four root-associated niches, and enhanced rhizosphere functions involved in nitrogen, phosphorus, and carbon cycling, as well as the relative abundance and biodiversity of keystone modules in rhizosphere soil. Furthermore, soil quality index analysis indicated that nano-BCCM exhibited greater potential than bulk-BCCM in maintaining soil health. The data revealed that nano-BCCM could regulate the Cd concentration in lettuce shoot by promoting microbial biodiversity of keystone modules in soil-root continuum and rhizosphere bacterial functions. These findings suggest that nano-biochar compost associations can be a superior strategy for enhancing microbial functions, maintaining soil health, and ensuring crop production safety in the Cd-contaminated soil compared to the mix of bulk-biochar and compost.


Assuntos
Bactérias , Cádmio , Carvão Vegetal , Compostagem , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Carvão Vegetal/química , Bactérias/metabolismo , Microbiota , Raízes de Plantas/microbiologia , Lactuca/microbiologia , Esterco
19.
Environ Sci Pollut Res Int ; 31(13): 19764-19778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363505

RESUMO

The changes of soil moisture, salinity, and nutrients by halophyte colonization in high-salinity environment profoundly affect the assembly and structure of microbial communities. However, salt marshes in arid region have received little attention. This study was conducted in Lianhuachi Lake, a typical inland salt marsh wetland in China, to determine the physicochemical characteristics of salt crusts in [Kalidium cuspidatum (Ung.-Sternb.) Grub.] colonization areas and bulk soil, respectively, and to analyze the microbial community structure of salt crusts by high-throughput sequencing. Kalidium cuspidatum colonization significantly decreased total salinity, soil water content, and water-soluble ions of salt crusts and increased total carbon, total nitrogen, and total phosphorus content. At the same time, changes in physicochemical properties caused by Kalidium cuspidatum colonization affect the ecological processes of bacterial, fungal, and archaeal community assemblies in salt crusts. In addition, cross-kingdom network analysis showed that Kalidium cuspidatum colonization increased the complexity and stability of microbial networks in salt crust soils. Functional projections further showed that bacterial diversity had a potential driving effect on the nitrogen cycle function of salt crust. Our study further demonstrated the different ecological strategies of microorganisms for halophyte colonization in extreme environments and contributed to the understanding of restoration and management of salt marsh wetlands in arid region.


Assuntos
Chenopodiaceae , Microbiota , Áreas Alagadas , Bactérias , Solo/química , Água , Microbiologia do Solo
20.
Front Microbiol ; 15: 1422534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149207

RESUMO

Soil microorganisms play a crucial role in the plant invasion process, acting as both drivers of and responders to plant invasion. However, the effects of plant invasion on the complexity and stability of co-occurrence networks of soil microbial communities remain unclear. Here, we investigated how the invasion of Spartina alterniflora affected the diversity, composition, and co-occurrence networks of soil bacterial and fungal communities in the Yellow River Delta, China. Compared to the native plant (Suaeda salsa), S. alterniflora invasion decreased the α-diversity of soil bacterial communities but did not affect that of fungal communities. The ß-diversity of soil bacterial and fungal communities under S. salsa and S. alterniflora habitats also differed dramatically. S. alterniflora invasion increased the relative abundance of the copiotrophic phylum Bacteroidota, whereas decreased the relative abundances of the oligotrophic phyla Acidobacteriota and Gemmatimonadota. Additionally, the relative abundance of Chytridiomycota, known for its role in degrading recalcitrant organic matter, increased substantially within the soil fungal community. Functional predictions revealed that S. alterniflora invasion increased the relative abundance of certain soil bacteria involved in carbon and nitrogen cycling, including aerobic chemoheterotrophy, nitrate reduction, and nitrate respiration. More importantly, S. alterniflora invasion reduced the complexity and stability of both soil bacterial and fungal community networks. The shifts in soil microbial community structure and diversity were mainly induced by soil available nutrients and soil salinity. Overall, our study highlights the profound impacts of S. alterniflora invasion on soil microbial communities, which could further indicate the modification of ecosystem functioning by invasive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA