Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 270, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379959

RESUMO

BACKGROUND: Adaptive laboratory evolution (ALE) is an impactful technique for cultivating microorganisms to adapt to specific environmental circumstances or substrates through iterative growth and selection. This study utilized an adaptive laboratory evolution method on Lipomyces starkeyi for high tolerance in producing lignin derivative alcohols and lipids from syringaldehyde. Afterward, untargeted metabolomics analysis was employed to find the key metabolites that play important roles in the better performance of evolved strains compared to the wild type. Lignin, a prominent constituent of plant biomass, is a favorable source material for the manufacture of biofuel and lipids. Nevertheless, the effective transformation of chemicals produced from lignin into products with high economic worth continues to be a difficult task. RESULTS: In this study, we exposed L. starkeyi to a series of flask passaging experiments while applying selective pressure to facilitate its adaptation to syringaldehyde, a specific type of lignin monomeric aldehyde. Using ALE, we successfully developed a new strain, DALE-22, which can synthesize syringyl alcohol up to 18.74 mM from 22.28 mM syringaldehyde with 41.9% lipid accumulation. In addition, a comprehensive examination of untargeted metabolomics identified six specific crucial metabolites linked to the improved tolerance of the evolved strain in the utilization of syringaldehyde, including 2-aminobutyric acid, allantoin, 4-hydroxyphenethyl alcohol, 2-aminoethanol, tryptophan, and 5-aminovaleric acid. CONCLUSION: The results of our study reveal how L. starkeyi adapts to using substrates produced from lignin. These findings offer important information for developing strategies to improve the process of converting lignin into valuable products for sustainable biorefinery applications.


Assuntos
Lignina , Lipomyces , Metabolômica , Lignina/metabolismo , Lipomyces/metabolismo , Lipídeos/biossíntese , Lipídeos/análise , Álcoois/metabolismo , Benzaldeídos/metabolismo
2.
Environ Res ; 255: 119125, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740293

RESUMO

With the drastic growth of the economic and population, the global energy requirement is on the rise, and massive human and material resources have been put into the development of alternative and renewable energy sources. Biodiesel has been recognized as a green and sustainable alternative energy, but the raw materials-associated source and cost makes it difficult to achieve large-scale commercial production. Microbial lipids (ML) produced by oleaginous microbes have attracted more and more topics as feedstocks for biodiesel production because of their unique advantages (fast growth cycle, small footprint and so on). However, there are still many problems and challenges ahead towards commercialization of ML-based biodiesel, especially the cost of feedstock for ML production. Food waste (FW) rich in organic matters and nutrients is an excellent and almost zero-cost feedstock for ML production. However, current biological routes of FW-based ML production have some defects, which make it impossible to achieve full industrialization at present. Therefore, this review intends to provide a critical and comprehensive analysis of current biological routes of FW-based ML production with the focus on the challenges and solutions forward. The biological routes towards future FW-based ML production must be able to concurrently achieve economic feasibility and environmental sustainability. On this condition, an innovative integrated biological route for FW-based ML production has thus been put forward, which is also elucidated on its economic and environmental sustainability. Moreover, the prospective advantages, limitations and challenges for future scale-up of FW-based ML production have also been outlined, together with the perspectives and directions forward.


Assuntos
Biocombustíveis , Biocombustíveis/economia , Lipídeos , Perda e Desperdício de Alimentos
3.
World J Microbiol Biotechnol ; 40(11): 337, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358563

RESUMO

Biocomponents (such as lipids) accumulate in oleaginous microorganisms and could be used for renewable energy production. Oleaginous microbes are characterized by their ability to accumulate high levels of lipids, which can be converted into biodiesel. The oleaginous microbes (including microalgae, bacteria, yeast, and fungi) can utilize diverse substrates. Thus, in this study, commercially viable oleaginous microorganisms are comparatively summarized for their growth conditions, substrate utilization, and applications in biotechnological processes. Lipid content is species-dependent, as are culture conditions (such as temperature, pH, nutrients, and culture time) and substrates. Lipid production can be increased by selecting suitable microorganisms and substrates, optimizing environmental conditions, and using genetic engineering techniques. In addition, the emphasis on downstream processes (including harvesting, cell disruption, lipid extraction, and transesterification) highlights their critical role in enhancing cost-effectiveness. Oleaginous microorganisms are potential candidates for lipid biosynthesis and could play a key role in meeting the energy needs of the world in the future.


Assuntos
Bactérias , Biocombustíveis , Fungos , Metabolismo dos Lipídeos , Microalgas , Energia Renovável , Biocombustíveis/microbiologia , Microalgas/metabolismo , Bactérias/metabolismo , Bactérias/genética , Fungos/metabolismo , Biotecnologia/métodos , Lipídeos/biossíntese
4.
Appl Microbiol Biotechnol ; 107(15): 4973-4985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329489

RESUMO

Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study presents cultivation conditions that selectively stimulate the cell biomass, individual carotenoids and lipids. It was found that supplemental carbon and nitrogen sources as well as illumination affected cell biomass the most. High temperature, low initial pH, illumination, lack of urea and presence of glycerol stimulated the lipid synthesis. The highest total lipid content obtained in undiluted OMW supplemented with urea was 11.08 ± 0.17% (w/w) whilst it was 41.40 ± 0.21% (w/w) when supplemented with glycerol. Moreover, the main fatty acid produced by R. glutinis in all media was oleic acid, whose fraction reached 63.94 ± 0.58%. Total carotenoid yield was significantly increased with low initial pH, high temperature, illumination, certain amounts of urea, glycerol and cultivation time. Up to 192.09 ± 0.16 µg/g cell carotenoid yield was achieved. Torularhodin could be selectively produced at high pH, low temperature and with urea and glycerol supplementation. To selectively induce torulene synthesis, cultivation conditions should have low pH, high temperature and illumination. In addition, low pH, high temperature and urea supplementation served high production of ß-carotene. Up to 85.40 ± 0.76, 80.67 ± 1.40 and 39.45 ± 0.69% of torulene, torularhodin and ß-carotene, respectively, were obtained under selected conditions. KEY POINTS: • Cultivation conditions selectively induced target carotenoids and lipids • 41.40 ± 0.21% (w/w) lipid content and 192.09 ± 0.16 µg/g cell carotenoid yield were achieved • Markedly high selectivity values for torularhodin and torulene were achieved.


Assuntos
Olea , Rhodotorula , beta Caroteno , Águas Residuárias , Glicerol , Carotenoides , Ácidos Graxos
5.
Appl Microbiol Biotechnol ; 107(4): 1491-1501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633623

RESUMO

Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Ácidos Graxos/metabolismo , Leveduras/metabolismo , Biocombustíveis , Lipase/metabolismo , Biomassa , Triglicerídeos/metabolismo
6.
World J Microbiol Biotechnol ; 39(9): 234, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358633

RESUMO

Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.


Assuntos
Ácidos Graxos , Rhodotorula , Ácidos Graxos/metabolismo , Rhodotorula/metabolismo , Leveduras/metabolismo , Óleos/metabolismo
7.
Biotechnol Bioeng ; 119(6): 1509-1521, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165884

RESUMO

Microbial lipid production from lignocellulose biomass provides an essential option for sustainable and carbon-neutral supply of future aviation fuels, biodiesel, as well as various food and nutrition products. Oleaginous yeast is the major microbial cell factory but its lipid-producing performance is far below the requirements of industrial application. Here we show an ultra-centrifugation fractionation in adaptive evolution (UCF) of Trichosporon cutaneum based on the minor cell density difference. The lightest cells with the maximum intracellular lipid content were isolated by ultra-centrifugation fractionation in the long-term adaptive evolution. Significant changes occurred in the cell morphology with a fragile cell wall wrapping and enlarged intracellular space (two orders of magnitude increase in cell size). Complete and coordinate assimilations of all nonglucose sugars derived from lignocellulose were triggered and fluxed into lipid synthesis. Genome mutations and significant transcriptional regulations of the genes responsible for cell structure were identified and experimentally confirmed. The obtained T. cutaneum MP11 cells achieved a high lipid production of wheat straw, approximately five-fold greater than that of the parental cells. The study provided an effective method for screening the high lipid-containing oleaginous yeast cells as well as the intracellular products accumulating cells in general.


Assuntos
Basidiomycota , Trichosporon , Biomassa , Centrifugação , Lipídeos , Trichosporon/genética
8.
Environ Res ; 203: 111881, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411547

RESUMO

In this study, waste cooking oil (WCO) co-fermentation with food waste by variable pH strategy was developed for microbial lipid production. Results showed that when WCO substitution rate within the range of 1.56-4.68% (corresponding to the WCO content in food waste), lipid production from Rhodosporidium toruloides 2.1389 could be increased by 7.2 g/kg food waste because of the better synergistic effect. Mechanism analysis revealed that the fatty acid salt produced from WCO under alkaline condition, as a surface active agent, could improve lipid production, but excessive WCO (29.2 g/L) would inhibit the lipid production due to its hindrance to the oxygen. The lipid composition analysis found that the produced lipid could be used as raw material for biodiesel production. It was estimated that 15.0 million tonnes of biodiesel could be produced from global food waste yearly by adopting the proposed WCO co-fermentation with variable pH strategy, together with reduction of about 0.31 million tonnes of CO2 equivalents and 1435 tonnes of SO2. It is expected that this study may lead to the paradigm shift in future biodiesel production from food waste.


Assuntos
Alimentos , Eliminação de Resíduos , Biocombustíveis/análise , Carbono , Culinária , Lipídeos
9.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614154

RESUMO

The aim of the present work was to obtain microbial lipids (single-cell oils and SCOs) from oleaginous yeast cultivated on biodiesel-derived glycerol and subsequently proceed to the enzymatic synthesis of high-value biosurfactant-type molecules in an aqueous medium, with SCOs implicated as acyl donors (ADs). Indeed, the initial screening of five non-conventional oleaginous yeasts revealed that the most important lipid producer was the microorganism Cryptococcus curvatus ATCC 20509. SCO production was optimised according to the nature of the nitrogen source and the initial concentration of glycerol (Glyc0) employed in the medium. Lipids up to 50% w/w in dry cell weight (DCW) (SCOmax = 6.1 g/L) occurred at Glyc0 ≈ 70 g/L (C/N ≈ 80 moles/moles). Thereafter, lipids were recovered and were subsequently used as ADs in the N-acylation reaction catalysed by aminoacylases produced from Streptomyces ambofaciens ATCC 23877 under aqueous conditions, while Candida antarctica lipase B (CALB) was used as a reference enzyme. Aminoacylases revealed excellent activity towards the synthesis of acyl-lysine only when free fatty acids (FAs) were used as the AD, and the rare regioselectivity in the α-amino group, which has a great impact on the preservation of the functional side chains of any amino acids or peptides. Aminoacylases presented higher α-oleoyl-lysine productivity and final titer (8.3 g/L) with hydrolysed SCO than with hydrolysed vegetable oil. The substrate specificity of both enzymes towards the three main FAs found in SCO was studied, and a new parameter was defined, viz., Specificity factor (Sf), which expresses the relative substrate specificity of an enzyme towards a FA present in a FA mixture. The Sf value of aminoacylases was the highest with palmitic acid in all cases tested, ranging from 2.0 to 3.0, while that of CALB was with linoleic acid (0.9-1.5). To the best of our knowledge, this is the first time that a microbial oil has been successfully used as AD for biosurfactant synthesis. This bio-refinery approach illustrates the concept of a state-of-the-art combination of enzyme and microbial technology to produce high-value biosurfactants through environmentally friendly and economically sound processes.


Assuntos
Glicerol , Toupeiras , Animais , Glicerol/metabolismo , Aminoácidos/metabolismo , Lisina/metabolismo , Toupeiras/metabolismo , Leveduras/metabolismo , Óleos de Plantas/metabolismo , Biocombustíveis , Ácidos Graxos/metabolismo
10.
Microb Cell Fact ; 20(1): 221, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876155

RESUMO

Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.


Assuntos
Pesquisa , Yarrowia/genética , Yarrowia/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Biocombustíveis , Biomassa , Lipídeos/biossíntese , Engenharia Metabólica/métodos
11.
Bioprocess Biosyst Eng ; 43(8): 1403-1414, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32246219

RESUMO

With the rapid depletion of crude resources, microorganism lipids have started attracting increasing attention because of their renewable qualities. However, their production is limited by high costs. In this study, we aimed to reduce the production cost of Sporidiobolus pararoseus JD-2 lipid by co-producing extracellular polysaccharide (EPS) and single-cell protein (SCP). In batch fermentation, the yields of lipid, EPS and SCP under ammonia nitrogen limitation increased by 20.3%, 32.0% and 43.7%, respectively, compared with the yields in the control group (without NH4+). Next, fed-batch fermentation was performed under different ammonia nitrogen levels. The yield, productivity and coefficient of lipid reached 47.1 ± 1.1 g/L, 0.66 g/L/h and 0.250 g/g, respectively, under an ammonia nitrogen level of 20 g/L (NH4)2SO4. In the same process, 14.3 ± 1.6 g/L EPS and 12.7 ± 0.8 g/L SCP were also obtained. Nutrient analysis of the product revealed that NH4+ affected the proportion of pigments in the carotenoids and increased the content of unsaturated fatty acids in the lipid; EPS mainly comprised galactose, glucose, mannose and fucose, at a ratio of approximately 45:37:2:1; and the essential amino acid content in SCP accounted for 48% of the product. Thus, this study provided a new strategy for improving S. pararoseus JD-2 lipid production at a lower cost.


Assuntos
Amônia/metabolismo , Basidiomycota/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Polissacarídeos Fúngicos , Proteínas Fúngicas , Lipídeos , Amônia/farmacologia , Polissacarídeos Fúngicos/biossíntese , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Lipídeos/biossíntese , Lipídeos/química , Lipídeos/isolamento & purificação
12.
Zhongguo Zhong Yao Za Zhi ; 45(18): 4392-4397, 2020 Sep.
Artigo em Zh | MEDLINE | ID: mdl-33164367

RESUMO

Songling Xuemaikang Capsules is a Chinese patent medicine mainly made of the Chineses medicine Puerariae Lobatae Radix and leaves of Pinus massoniana. During its production, a large amount of herb extraction residues would be treated as wastes, resulting in resource wasting and serious environmental pollution. In order to solve this problem, we took the hydrolysates of Puerariae Lobatae Radix, P. massoniana leaves, and whole herb residues of Songling Xuemaikang Capsules as the fermentation substrate to explore the ability of Rhodosporidium toruloides to produce microbial lipid. The results showed that the R. toruloides could produce lipid with use of the residues from Songling Xuemaikang Capsules, and the lipid contents reached 33.6%. The lipid products had similar fatty acid composition profiles to those of vegetable oils. Herb residues were converted into fermentation substrates in this study, and were recycled into the production of high value-added compounds to realize the transformation of the wastes, laying the foundation for the sustainable utilization of herb residues.


Assuntos
Medicamentos de Ervas Chinesas , Pueraria , Cápsulas , Lipídeos
13.
Indian J Microbiol ; 60(2): 246-250, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32255857

RESUMO

Lipid accumulation is generally believed to be a partially growth-coupled biochemical process that results in differences in lipid content between different cells. To separate lipid-rich cells and increase the cellular biomass in bioreactors during the cultivation of the oleaginous yeasts, a gravity sedimentation system (GSS) is coupled to a bioreactor. The dilution rate (D) and the ratio of the outflow rate from the outlet of the GSS to the inflow rate into the bioreactor (B) were evaluated. The biomass in the bioreactor with GSS increased by 16.3% and 30.6% at D values of 0.05 h-1 (B = 0.25) and 0.02 h-1 (B = 0.5), respectively. Interestingly, cells containing 39.3% lipids were obtained from the outlet of the GSS (D = 0.02 h-1, B = 0.5), and the lipid content increased by 7.8% compared to that of the bioreactor. The results indicated that use of a GSS is a very effective method for increasing the cell concentration and separation of lipid-rich cells.

14.
Microb Cell Fact ; 18(1): 149, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481079

RESUMO

BACKGROUND: Polyol esters of fatty acids (PEFA) are a kind of promising biosurfactants and mainly secreted by Rhodotorula strains. In addition, some strains of Rhodotorula are reliable producers of microbial lipid. Therefore, it is feasible to establish a one step fermentation process for efficient simultaneous production of PEFA and microbial lipids by a suitable Rhodotorula strain. RESULTS: A newly isolated deep-sea yeast, Rhodotorula paludigena P4R5, was shown to simultaneously produce high level of intracellular lipid and extracellular PEFA. Under the optimized conditions, it could yield 48.5 g/L of PEFA and 16.9 g/L of intracellular lipid within 156 h from inulin during 10-L batch fermentation. The PEFA consisting of a mixture of mannitol esters of 3-hydroxy C14, C16 and C18 fatty acids with variable acetylation showed outstanding surface activity and emulsifying activity, while the fatty acids of the intracellular lipid were mainly C16 and C18 and could be high-quality feedstock for biodiesel production. CONCLUSION: The deep-sea yeast strain R. paludigena P4R5 was an excellent candidate for efficient simultaneous of biosurfactants and biodiesel from inulin. Our results also suggested that the establishment of fermentation systems with multiple metabolites production was an effective approach to improve the profitability.


Assuntos
Biocombustíveis , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Inulina/metabolismo , Polímeros/metabolismo , Rhodotorula/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Fermentação
15.
Prep Biochem Biotechnol ; 49(6): 597-605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929602

RESUMO

A simple and accurate Nile Red fluorescent method was built to evaluate the lipid content of three different oleaginous yeasts by one standard curve. The staining of cells can be observed clearly by laser scanning confocal microscope, showing that Nile Red can enter into the cells of oleaginous yeasts easily. A series of conditions such as pretreating temperature, cell suspension concentration (OD600), staining time, Nile Red concentration and the type of suspension solvent were learnt systematically to obtain the optimal process parameters for Nile Red staining. After optimization, the fitting curve of Nile Red fluorescent method was established under suitable conditions (pretreating temperature: 50 °C, OD600: 1.0; staining time: 5 mins; Nile Red concentration: 1.0 µg/mL; suspension solvent: PBS) and it had a suitable correlation coefficient (R2 = 0.95) for lipid content measurement of different oleaginous yeasts. By this study, the possibility of lipid content determination of different oleaginous yeasts by one fitting curve can be proven and this will improve the efficiency of researches related to microbial lipid production.


Assuntos
Corantes Fluorescentes/química , Lipídeos/análise , Microscopia Confocal/métodos , Oxazinas/química , Leveduras/química , Cryptococcus/química , Lipomyces/química , Coloração e Rotulagem/métodos , Temperatura , Trichosporon/química
16.
Appl Microbiol Biotechnol ; 101(9): 3801-3809, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28168317

RESUMO

Lipid production by the red yeast Rhodosporidium toruloides was explored under nutrient limitation. To determine the compositional profiles of R. toruloides cells, samples were prepared using a continuous cultivation process under nutrient limitation and analyzed via several methods, including Fourier transform infrared spectroscopy and elemental analysis. Under nitrogen limitation, as the dilution rate increased, the cellular lipid content decreased but the carbohydrate and protein contents increased. Under carbon limitation, the cellular lipid, protein, and carbohydrate contents remained relatively constant at the different dilution rates. Moreover, the cellular elemental composition was essentially identical under nitrogen and carbon limitation at a high dilution rate of 0.20 h-1. We also analyzed the consumed carbon to nitrogen (C/N) under different nutrition conditions. The results indicated that the consumed C/N had a major influence on cell metabolism and product formation, which contributed to our understanding of the physiological characteristics of R. toruloides.


Assuntos
Meios de Cultura , Lipídeos/análise , Rhodotorula/química , Rhodotorula/crescimento & desenvolvimento , Carboidratos/análise , Carbono/análise , Elementos Químicos , Nitrogênio/análise , Proteínas/análise , Rhodotorula/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Environ Manage ; 198(Pt 1): 90-98, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453990

RESUMO

The low cost biosynthesis of microbial lipids are an efficient feedstock to replace plant based oil for biodiesel production. The present study objective is to explore the effect of thermo-chemo-sonic pre-digestion of municipal Waste Activated Sludge (WAS) to cultivate oleaginous L. starkeyi MTCC-1400 as a model organism to produce high yield biomass and lipid. Higher Suspended Solids (SS) reduction (20 and 15.71%) and Chemical Oxygen Demand (COD) solubilization (27.6 and 22.3%) were achieved at a Specific Energy (SE) input of 5569 kJ/kg for WAS digested with NaOH and KOH, respectively. The maximum biomass of 17.52 g L-1 and lipid 64.3% dwt were attained in NaOH pre-digested sample. The analyzed lipid profile exhibited high content of palmitic acid (45.6%) and oleic acid (38.7%) which are more suitable for biofuel production. Thus, these results strongly motivate the use of pre-digested WAS as an efficient and economical substrate for biodiesel production.


Assuntos
Biocombustíveis , Esgotos , Análise da Demanda Biológica de Oxigênio , Biomassa , Lipídeos
18.
World J Microbiol Biotechnol ; 33(3): 54, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28220353

RESUMO

Oleaginous microorganisms are receiving significant attention worldwide for their utility in biodiesel production and the potentiality to produce some specialty-type lipids. There is an increasing interest in isolation/adaption of robust microbe strains and design of innovative fermentation processes to make microbial lipid production a more efficient and economically feasible bio-process. Currently, the genus Rhodosporidium has been considered an important candidate, for the reason that several strains belonging to this genus have shown excellent capabilities of lipid accumulation, broad adaptabilities to various substrates, and co-production of some carotenoids. This paper reviews the current trends in the exploitation of Rhodosporidium species for microbial lipid production, including the utilization of various (single or mixed, pure or waste-derived) substrates, progress of genetic modification and metabolic engineering, innovations in fermentation mode, lipid characterizations and their potential applications. Finally, the constraints and perspectives of cultivating Rhodosporidium species for lipid production are also discussed.


Assuntos
Basidiomycota/metabolismo , Lipídeos/biossíntese , Basidiomycota/enzimologia , Basidiomycota/genética , Biocombustíveis , Ácidos Graxos/metabolismo , Fermentação , Microbiologia Industrial/métodos , Metabolismo dos Lipídeos , Lipídeos/economia , Engenharia Metabólica
19.
J Lipid Res ; 57(1): 142-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26574042

RESUMO

Both phthiocerol/phthiodiolone dimycocerosate (PDIM) and phenolic glycolipids are abundant virulent lipids in the cell wall of various pathogenic mycobacteria, which can synthesize a wide range of complex high-molecular-mass lipids. In this article, we describe linear ion-trap MS(n) mass spectrometric approach for structural study of PDIMs, which were desorbed as the [M + Li](+) and [M + NH(4)](+) ions by ESI. We also applied charge-switch strategy to convert the mycocerosic acid substituents to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and analyzed them as M (+) ions, following alkaline hydrolysis of the PDIM to release mycocerosic acids. The structural information from MS(n) on the [M + Li](+) and [M + NH(4)](+) molecular species and on the M (+) ions of the mycocerosic acid-AMPP derivative affords realization of the complex structures of PDIMs in Mycobacterium tuberculosis biofilm, differentiation of phthiocerol and phthiodiolone lipid families and complete structure identification, including the phthiocerol and phthiodiolone backbones, and the mycocerosic acid substituents, including the locations of their multiple methyl side chains, can be achieved.


Assuntos
Ésteres/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos/química , Mycobacterium tuberculosis/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biofilmes , Ésteres/análise , Ácidos Graxos/análise , Ácidos Graxos/química , Glicolipídeos/química , Lipídeos/análise , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia
20.
J Appl Microbiol ; 118(6): 1251-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25765073

RESUMO

The lipid composition of microbial communities can indicate their response to changes in the surrounding environment induced by anthropogenic practices, chemical contamination or climatic conditions. A considerable number of analytical techniques exist for the examination of microbial lipids. This article reviews a selection of methods available for environmental samples as applied for lipid extraction, fractionation, derivatization and quantification. The discussion focuses on the origin of the standard methods, the different modified versions developed for investigation of microbial lipids, as well as the advantages and limitations of each. Current modifications to standard methods show a number of improvements for each of the different steps associated with analysis. The advantages and disadvantages of lipid analysis compared to other popular techniques are clarified. Accordingly, the preferential utilization of signature lipid biomarker analysis in current research is considered. It is clear from recent literature that this technique stays relevant - mainly for the variety of microbial properties that can be determined in a single analysis.


Assuntos
Bactérias/metabolismo , Bioquímica/métodos , Biomarcadores/química , Lipídeos/química , Bactérias/química , Biomarcadores/metabolismo , Metabolismo dos Lipídeos , Lipídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA