Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(2): 403-411, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26165941

RESUMO

Small molecules that interfere with microtubule dynamics, such as Taxol and the Vinca alkaloids, are widely used in cell biology research and as clinical anticancer drugs. However, their activity cannot be restricted to specific target cells, which also causes severe side effects in chemotherapy. Here, we introduce the photostatins, inhibitors that can be switched on and off in vivo by visible light, to optically control microtubule dynamics. Photostatins modulate microtubule dynamics with a subsecond response time and control mitosis in living organisms with single-cell spatial precision. In longer-term applications in cell culture, photostatins are up to 250 times more cytotoxic when switched on with blue light than when kept in the dark. Therefore, photostatins are both valuable tools for cell biology, and are promising as a new class of precision chemotherapeutics whose toxicity may be spatiotemporally constrained using light.


Assuntos
Antimitóticos/química , Morte Celular , Microtúbulos/efeitos dos fármacos , Mitose , Estilbenos/química , Animais , Antimitóticos/toxicidade , Linhagem Celular Tumoral , Citoesqueleto/química , Humanos , Luz , Camundongos , Polimerização , Estilbenos/toxicidade
2.
EMBO J ; 43(4): 568-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263333

RESUMO

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.


Assuntos
Drosophila , Microtúbulos , Animais , Microtúbulos/metabolismo , Epitélio/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Morfogênese
3.
Proc Natl Acad Sci U S A ; 121(9): e2318782121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381793

RESUMO

Regulation of microtubule dynamics by microtubule-associated proteins (MAPs) is essential for mitotic spindle assembly and chromosome segregation. Altered microtubule dynamics, particularly increased microtubule growth rates, were found to be a contributing factor for the development of chromosomal instability, which potentiates tumorigenesis. The MAP XMAP215/CKAP5 is the only known microtubule growth factor, and whether other MAPs regulate microtubule growth in cells is unclear. Our recent in vitro reconstitution experiments have demonstrated that Cytoskeleton-Associated Protein 2 (CKAP2) increases microtubule nucleation and growth rates, and here, we find that CKAP2 is also an essential microtubule growth factor in cells. By applying CRISPR-Cas9 knock-in and knock-out (KO) as well as microtubule plus-end tracking live cell imaging, we show that CKAP2 is a mitotic spindle protein that ensures faithful chromosome segregation by regulating microtubule growth. Live cell imaging of endogenously labeled CKAP2 showed that it localizes to the spindle during mitosis and rapidly shifts its localization to the chromatin upon mitotic exit before being degraded. Cells lacking CKAP2 display reduced microtubule growth rates and an increased proportion of chromosome segregation errors and aneuploidy that may be a result of an accumulation of kinetochore-microtubule misattachments. Microtubule growth rates and chromosome segregation fidelity can be rescued upon ectopic CKAP2 expression in KO cells, revealing a direct link between CKAP2 expression and microtubule dynamics. Our results unveil a role of CKAP2 in regulating microtubule growth in cells and provide a mechanistic explanation for the oncogenic potential of CKAP2 misregulation.


Assuntos
Segregação de Cromossomos , Microtúbulos , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
4.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197773

RESUMO

Direct binding of netrin receptors with dynamic microtubules (MTs) in the neuronal growth cone plays an important role in netrin-mediated axon guidance. However, how netrin-1 (NTN1) regulates MT dynamics in axon turning remains a major unanswered question. Here, we show that the coupling of netrin-1 receptor DCC with tau (MAPT)-regulated MTs is involved in netrin-1-promoted axon attraction. Tau directly interacts with DCC and partially overlaps with DCC in the growth cone of primary neurons. Netrin-1 induces this interaction and the colocalization of DCC and tau in the growth cone. The netrin-1-induced interaction of tau with DCC relies on MT dynamics and TUBB3, a highly dynamic ß-tubulin isotype in developing neurons. Netrin-1 increased cosedimentation of DCC with tau and TUBB3 in MTs, and knockdown of either tau or TUBB3 mutually blocked this effect. Downregulation of endogenous tau levels by tau shRNAs inhibited netrin-1-induced axon outgrowth, branching and commissural axon attraction in vitro, and led to defects in spinal commissural axon projection in vivo. These findings suggest that tau is a key MT-associated protein coupling DCC with MT dynamics in netrin-1-promoted axon attraction.


Assuntos
Axônios , Cones de Crescimento , Netrina-1 , Neurônios , Microtúbulos
5.
Proc Natl Acad Sci U S A ; 120(8): e2214507120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795749

RESUMO

Regulation of microtubule dynamics is required to properly control various steps of neurodevelopment. In this study, we identified granule cell antiserum-positive 14 (Gcap14) as a microtubule plus-end-tracking protein and as a regulator of microtubule dynamics during neurodevelopment. Gcap14 knockout mice exhibited impaired cortical lamination. Gcap14 deficiency resulted in defective neuronal migration. Moreover, nuclear distribution element nudE-like 1 (Ndel1), an interacting partner of Gcap14, effectively corrected the downregulation of microtubule dynamics and the defects in neuronal migration caused by Gcap14 deficiency. Finally, we found that the Gcap14-Ndel1 complex participates in the functional link between microtubule and actin filament, thereby regulating their crosstalks in the growth cones of cortical neurons. Taken together, we propose that the Gcap14-Ndel1 complex is fundamental for cytoskeletal remodeling during neurodevelopmental processes such as neuronal processes elongation and neuronal migration.


Assuntos
Actinas , Proteínas Associadas aos Microtúbulos , Neurônios , Animais , Camundongos , Actinas/metabolismo , Movimento Celular/fisiologia , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo
6.
EMBO J ; 40(22): e108225, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34605051

RESUMO

Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.


Assuntos
Epistasia Genética , Microtúbulos/metabolismo , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Aneuploidia , Cromossomos Fúngicos , Regulação Fúngica da Expressão Gênica , Microtúbulos/genética , Polimerização , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequenciamento Completo do Genoma
7.
Proc Natl Acad Sci U S A ; 119(46): e2208294119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343235

RESUMO

Microtubules are essential cytoskeletal polymers that exhibit stochastic switches between tubulin assembly and disassembly. Here, we examine possible mechanisms for these switches, called catastrophes and rescues. We formulate a four-state Monte Carlo model, explicitly considering two biochemical and two conformational states of tubulin, based on a recently conceived view of microtubule assembly with flared ends. The model predicts that high activation energy barriers for lateral tubulin interactions can cause lagging of curled protofilaments, leading to a ragged appearance of the growing tip. Changes in the extent of tip raggedness explain some important but poorly understood features of microtubule catastrophe: weak dependence on tubulin concentration and an increase in its probability over time, known as aging. The model predicts a vanishingly rare frequency of spontaneous rescue unless patches of guanosine triphosphate tubulin are artificially embedded into microtubule lattice. To test our model, we used in vitro reconstitution, designed to minimize artifacts induced by microtubule interaction with nearby surfaces. Microtubules were assembled from seeds overhanging from microfabricated pedestals and thus well separated from the coverslip. This geometry reduced the rescue frequency and the incorporation of tubulins into the microtubule shaft compared with the conventional assay, producing data consistent with the model. Moreover, the rescue positions of microtubules nucleated from coverslip-immobilized seeds displayed a nonexponential distribution, confirming that coverslips can affect microtubule dynamics. Overall, our study establishes a unified theory accounting for microtubule assembly with flared ends, a tip structure-dependent catastrophe frequency, and a microtubule rescue frequency dependent on lattice damage and repair.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Guanosina Trifosfato/metabolismo , Método de Monte Carlo
8.
Proc Natl Acad Sci U S A ; 119(19): e2120098119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507869

RESUMO

Microtubule dynamics is regulated by various cellular proteins and perturbed by small-molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin ß subunit. Moreover, a PN2-3 N-terminal stretch lies in a ß-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small-molecule inhibitors of microtubule assembly.


Assuntos
Tubulina (Proteína) , Vinca , Microtúbulos/metabolismo , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina , Vinca/metabolismo
9.
J Biol Chem ; 299(12): 105398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898404

RESUMO

Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Segregação de Cromossomos , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Animais
10.
Crit Rev Clin Lab Sci ; 61(6): 404-434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38344808

RESUMO

KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.


Assuntos
Biomarcadores Tumorais , Cinesinas , Neoplasias , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/metabolismo , Progressão da Doença
11.
Bioorg Chem ; 152: 107738, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182257

RESUMO

Almost half of all medicines approved by the U.S. Food and Drug Administration have been found to be developed based on inspiration from natural products (NPs). Here, we report a novel strategy of scaffold overlaying of scaffold-hopped analogs of bioactive flavones and isoflavones and installation of drug-privileged motifs, which has led to discovery of anticancer agents that surpass the functional efficiency of the original NPs. The analogs, 2,3-diaryl-pyridopyrimidin-4-imine/ones were efficiently synthesized by an approach of a nitrile-stabilized quaternary ammonium ylide as masked synthon and Pd-catalyzed activation-arylation methods. Compared to the NPs, these NP-analogs exhibited differentiated functions; dual inhibition of human topoisomerase-II (hTopo-II) enzyme and tubulin polymerization, and pronounced antiproliferative effect against various cancer cell lines, including numerous drug-resistant cancer cells. The most active compound 5l displayed significant inhibition of migration ability of cancer cells and blocked G1/S phase transition in cell cycle. Compound 5l caused pronounced effect in expression patterns of various key cell cycle regulatory proteins; up-regulation of apoptotic proteins, Bax, Caspase 3 and p53, and down-regulation of apoptosis-inhibiting proteins, BcL-xL, Cyclin D1, Cyclin E1 and NF-κB, which indicates high efficiency of the molecule 5l in apoptosis-signal axis interfering potential. Cheminformatics analysis revealed that 2,3-diaryl-pyridopyrimidin-4-imine/ones occupy a distinctive drug-relevant chemical space that is seldom represented by natural products and good physicochemical, ADMET and pharmacokinetic-relevant profile. Together, the anticancer potential of the investigated analogs was found to be much more efficient compared to the original natural products and two anticancer drugs, Etoposide (hTopo-II inhibitor) and 5-Flurouracile (5-FU).


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/síntese química , Iminas/química , Iminas/farmacologia , Iminas/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/farmacologia
12.
J Biol Chem ; 298(11): 102526, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162501

RESUMO

Regulation of the neuronal microtubule cytoskeleton is achieved through the coordination of microtubule-associated proteins (MAPs). MAP-Tau, the most abundant MAP in the axon, functions to modulate motor motility, participate in signaling cascades, as well as directly mediate microtubule dynamics. Tau misregulation is associated with a class of neurodegenerative diseases, known as tauopathies, including progressive supranuclear palsy, Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau are found in the C-terminal microtubule-binding domain. These mutations decrease microtubule-binding affinity and are proposed to reduce microtubule stability, leading to disease. N-terminal disease-associated mutations also exist, but the mechanistic details of their downstream effects are not as clear. Here, we investigate the effect of the progressive supranuclear palsy-associated N-terminal R5L mutation on Tau-mediated microtubule dynamics using an in vitro reconstituted system. We show that the R5L mutation does not alter Tau interactions with tubulin by fluorescence correlation spectroscopy. Using total internal reflection fluorescence microscopy, we determined that the R5L mutation has no effect on microtubule growth rate, catastrophe frequency, or rescue frequency. Rather, the R5L mutation increases microtubule shrinkage rate. We determine this is due to disruption of Tau patches, larger order Tau complexes known to form on the GDP-microtubule lattice. Altogether, these results provide insight into the role of Tau patches in mediating microtubule dynamics and suggesting a novel mechanism by which mutations in the N-terminal projection domain reduce microtubule stability.


Assuntos
Paralisia Supranuclear Progressiva , Tauopatias , Proteínas tau , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Mutação , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
13.
Biochem Biophys Res Commun ; 682: 244-249, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826947

RESUMO

Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two αß-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the C-terminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.


Assuntos
Estatmina , Tubulina (Proteína) , Proteínas dos Microtúbulos/análise , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo
14.
Phys Biol ; 20(3)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36893471

RESUMO

Microtubule (MT) severing enzymes Katanin and Spastin cut the MT into smaller fragments and are being studied extensively usingin-vitroexperiments due to their crucial role in different cancers and neurodevelopmental disorders. It has been reported that the severing enzymes are either involved in increasing or decreasing the tubulin mass. Currently, there are a few analytical and computational models for MT amplification and severing. However, these models do not capture the action of MT severing explicitly, as these are based on partial differential equations in one dimension. On the other hand, a few discrete lattice-based models were used earlier to understand the activity of severing enzymes only on stabilized MTs. Hence, in this study, discrete lattice-based Monte Carlo models that included MT dynamics and severing enzyme activity have been developed to understand the effect of severing enzymes on tubulin mass, MT number, and MT length. It was found that the action of severing enzyme reduces average MT length while increasing their number; however, the total tubulin mass can decrease or increase depending on the concentration of GMPCPP (Guanylyl-(α,ß)-methylene-diphosphonate)-which is a slowly hydrolyzable analogue of GTP (Guanosine triphosphate). Further, relative tubulin mass also depends on the detachment ratio of GTP/GMPCPP and Guanosine diphosphate tubulin dimers and the binding energies of tubulin dimers covered by the severing enzyme.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Simulação por Computador , Microtúbulos/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia
15.
EMBO Rep ; 22(5): e50770, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900015

RESUMO

In Caenorhabditis elegans zygote, astral microtubules generate forces essential to position the mitotic spindle, by pushing against and pulling from the cortex. Measuring microtubule dynamics there, we revealed the presence of two populations, corresponding to pulling and pushing events. It offers a unique opportunity to study, under physiological conditions, the variations of both spindle-positioning forces along space and time. We propose a threefold control of pulling force, by polarity, spindle position and mitotic progression. We showed that the sole anteroposterior asymmetry in dynein on-rate, encoding pulling force imbalance, is sufficient to cause posterior spindle displacement. The positional regulation, reflecting the number of microtubule contacts in the posterior-most region, reinforces this imbalance only in late anaphase. Furthermore, we exhibited the first direct proof that dynein processivity increases along mitosis. It reflects the temporal control of pulling forces, which strengthens at anaphase onset following mitotic progression and independently from chromatid separation. In contrast, the pushing force remains constant and symmetric and contributes to maintaining the spindle at the cell centre during metaphase.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microtúbulos , Fuso Acromático , Zigoto
16.
J Eukaryot Microbiol ; 70(2): e12955, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409155

RESUMO

The centrohelid heliozoan Raphidocystis contractilis has many radiating axopodia, each containing axopodial microtubules. The axopodia show rapid contraction at nearly a video rate (30 frames per second) in response to mechanical stimuli. The axopodial contraction is accompanied by cytoskeletal microtubule depolymerization, but the molecular mechanism of this phenomenon has not been elucidated. In this study, we performed de novo transcriptome sequencing of R. contractilis to identify genes involved in microtubule dynamics such as the rapid axopodial contraction. The transcriptome sequencing generated 7.15-Gbp clean reads in total, which were assembled as 31,771 unigenes. Using the obtained gene sets, we identified several microtubule-severing proteins which might be involved in the rapid axopodial contraction, and kinesin-like genes that occur in gene duplication. On the other hand, some genes for microtubule motor proteins involved in the formation and motility of flagella were not found in R. contractilis, suggesting that the gene repertoire of R. contractilis reflected the morphological features of nonflagellated protists. Our transcriptome analysis provides basic information for the analysis of the molecular mechanism underlying microtubule dynamics in R. contractilis.


Assuntos
Eucariotos , Perfilação da Expressão Gênica , Eucariotos/genética , Microtúbulos
17.
Mol Cell Neurosci ; 120: 103707, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231567

RESUMO

The neuronal microtubule-associated protein tau undergoes multiple post-translational modifications, which dynamically modulate its molecular functions and biochemical features in space and time. Among them, we have recently reported that a conserved lysine residue mapping to the microtubule-binding domain of the protein (K306 in mouse and K317 in human) is differentially methylated in a model of chronic autoimmune demyelination. In contrast with other well-studied tau post-translational modifications such as phosphorylation, lysine methylation is far less investigated and its specific impact on tau biology is not fully understood. Here we performed a comprehensive analysis of the effects of K317 methylation on key tau features. By combining in silico simulations with in vitro biochemical assays and live-cell imaging, we show that methylated tau is more prone to self-assembly into insoluble structures. Moreover, we demonstrate that K317 methylation affects the stabilization activity of tau on microtubule dynamics. Lastly, we highlight a role for K317 methylation in regulating both neuronal differentiation and cell proliferation. Altogether, these findings shed light on the biology of an overlooked tau post-translational modification as well as on the fine tuning of tau functionality in health and disease.


Assuntos
Lisina , Proteínas tau , Animais , Lisina/metabolismo , Metilação , Camundongos , Neurônios/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo
18.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835001

RESUMO

Radiation resistance and radiation-related side effects warrant research into alternative strategies in the application of this modality to cancer treatment. Designed in silico to improve the pharmacokinetics and anti-cancer properties of 2-methoxyestradiol, 2-ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene (ESE-16) disrupts microtubule dynamics and induces apoptosis. Here, we investigated whether pre-exposure of breast cancer cells to low-dose ESE-16 would affect radiation-induced deoxyribonucleic acid (DNA) damage and the consequent repair pathways. MCF-7, MDA-MB-231, and BT-20 cells were exposed to sub-lethal doses of ESE-16 for 24 h before 8 Gy radiation. Flow cytometric quantification of Annexin V, clonogenic studies, micronuclei quantification, assessment of histone H2AX phosphorylation and Ku70 expression were performed to assess cell viability, DNA damage, and repair pathways, in both directly irradiated cells and cells treated with conditioned medium. A small increase in apoptosis was observed as an early consequence, with significant repercussions on long-term cell survival. Overall, a greater degree of DNA damage was detected. Moreover, initiation of the DNA-damage repair response was delayed, with a subsequent sustained elevation. Radiation-induced bystander effects induced similar pathways and were initiated via intercellular signaling. These results justify further investigation of ESE-16 as a radiation-sensitizing agent since pre-exposure appears to augment the response of tumor cells to radiation.


Assuntos
Neoplasias da Mama , Dano ao DNA , Reparo do DNA , Estrenos , Feminino , Humanos , 2-Metoxiestradiol/análogos & derivados , 2-Metoxiestradiol/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Estrenos/farmacologia , Estrenos/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
19.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31919497

RESUMO

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Assuntos
Comportamento Animal , Cinesinas/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Mutação , Neurônios/patologia , Proteínas Repressoras/fisiologia , Animais , Masculino , Malformações do Desenvolvimento Cortical/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
20.
EMBO J ; 37(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30266824

RESUMO

Loss-of-function mutations in CDKL5 kinase cause severe neurodevelopmental delay and early-onset seizures. Identification of CDKL5 substrates is key to understanding its function. Using chemical genetics, we found that CDKL5 phosphorylates three microtubule-associated proteins: MAP1S, EB2 and ARHGEF2, and determined the phosphorylation sites. Substrate phosphorylations are greatly reduced in CDKL5 knockout mice, verifying these as physiological substrates. In CDKL5 knockout mouse neurons, dendritic microtubules have longer EB3-labelled plus-end growth duration and these altered dynamics are rescued by reduction of MAP1S levels through shRNA expression, indicating that CDKL5 regulates microtubule dynamics via phosphorylation of MAP1S. We show that phosphorylation by CDKL5 is required for MAP1S dissociation from microtubules. Additionally, anterograde cargo trafficking is compromised in CDKL5 knockout mouse dendrites. Finally, EB2 phosphorylation is reduced in patient-derived human neurons. Our results reveal a novel activity-dependent molecular pathway in dendritic microtubule regulation and suggest a pathological mechanism which may contribute to CDKL5 deficiency disorder.


Assuntos
Dendritos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Espasmos Infantis/genética , Espasmos Infantis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA