Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 114(2): 279-292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738107

RESUMO

Terrestrial plants emit volatiles into the atmosphere to attract both pollinators and the enemies of herbivores, for defense. Phalaenopsis bellina is a scented orchid species in which the main scent components are monoterpenes, including linalool and geraniol, and their derivatives. Here, we investigated whether ABC transporters are involved in floral scent emission. We carried out whole-genome identification of ABC transporter-related genes using four floral transcriptomics libraries of P. bellina. We identified 86 ABC subfamily G genes related to terpenoid transport. After comparing the gene expression patterns of P. bellina with that of Phalaenopsis aphrodite subsp. formosana, a scentless species, followed by gene-to-gene correlation analysis, PbABCG1 and PbABCG2 were selected. The temporal expression of both PbABCG1 and PbABCG2 was highly correlated with that of the key enzyme PbGDPS and the major transcription factor PbbHLH4 in monoterpene biosynthesis, with optimal expression on day 5 post-anthesis. Spatial gene expression analysis showed that PbABCG1 was highly expressed in sepals, whereas PbABCG2 was expressed in the lip. Subcellular localization with a GFP fusion protein revealed that both PbABCG1 and PbABCG2 are cytoplasmic membrane proteins. Co-downregulation of PbABCG1 and PbABCG2 using both double-strand RNA interference and tobacco rattle virus-based gene silencing led to a significant decrease in monoterpene emission, accompanied by an increase in the internal monoterpene pools. Furthermore, ectopic expression of PbABCG1 and PbABCG2 in an ABC16- mutant yeast strain rescued its tolerance to geraniol. Altogether, our results indicate that PbABCG1 and PbABCG2 play substantial roles in monoterpene transport/emission in P. bellina floral scent.


Assuntos
Monoterpenos , Orchidaceae , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Orchidaceae/genética
2.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566027

RESUMO

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Assuntos
Alquil e Aril Transferases , Coffea , Liases Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Sementes , Perfilação da Expressão Gênica
3.
Plant Biotechnol J ; 22(6): 1610-1621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243882

RESUMO

Muscat flavour represents a group of unique aromatic attributes in some grape varieties. Biochemically, grape berries with muscat flavour produce high levels of monoterpenes. Monoterpene biosynthesis is mainly through the DOXP/MEP pathway, and VvDXS1 encodes the first enzyme in this plastidial pathway of terpene biosynthesis in grapevine. A single-point mutation resulting in the substitution of a lysine with an asparagine at position 284 in the VvDXS1 protein has previously been identified as the major cause for producing muscat flavour in grapes. In this study, the same substitution in the VvDXS1 protein was successfully created through prime editing in the table grape Vitis vinifera cv. 'Scarlet Royal'. The targeted point mutation was detected in most of the transgenic vines, with varying editing efficiencies. No unintended mutations were detected in the edited alleles, either by PCR Sanger sequencing or by amplicon sequencing. More than a dozen edited vines were identified with an editing efficiency of more than 50%, indicating that these vines were likely derived from single cells in which one allele was edited. These vines had much higher levels of monoterpenes in their leaves than the control, similar to what was found in leaf samples between field-grown muscat and non-muscat grapes.


Assuntos
Edição de Genes , Vitis , Vitis/genética , Vitis/metabolismo , Edição de Genes/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Aromatizantes/metabolismo , Monoterpenos/metabolismo , Frutas/genética , Frutas/metabolismo , Mutação Puntual
4.
Metab Eng ; 84: 83-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897449

RESUMO

Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.


Assuntos
Engenharia Metabólica , Monoterpenos Acíclicos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Terpenos/metabolismo
5.
Chemistry ; 30(10): e202302936, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38012074

RESUMO

Protein engineering of cytochrome P450s has enabled these biocatalysts to promote a variety of abiotic reactions beyond nature's repertoire. Integrating such non-natural transformations with microbial biosynthetic pathways could allow sustainable enzymatic production of modified natural product derivatives. In particular, trifluoromethylation is a highly desirable modification in pharmaceutical research due to the positive effects of the trifluoromethyl group on drug potency, bioavailability, and metabolic stability. This study demonstrates the biosynthesis of non-natural trifluoromethyl-substituted cyclopropane derivatives of natural monoterpene scaffolds using an engineered cytochrome P450 variant, P411-PFA. P411-PFA successfully catalyzed the transfer of a trifluoromethyl carbene from 2-diazo-1,1,1-trifluoroethane to the terminal alkenes of several monoterpenes, including L-carveol, carvone, perilla alcohol, and perillartine, to generate the corresponding trifluoromethylated cyclopropane products. Furthermore, integration of this abiotic cyclopropanation reaction with a reconstructed metabolic pathway for L-carveol production in Escherichia coli enabled one-step biosynthesis of a trifluoromethylated L-carveol derivative from limonene precursor. Overall, amalgamating synthetic enzymatic chemistry with established metabolic pathways represents a promising approach to sustainably produce bioactive natural product analogs.


Assuntos
Produtos Biológicos , Monoterpenos Cicloexânicos , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Monoterpenos/metabolismo , Escherichia coli/metabolismo , Ciclopropanos/química , Produtos Biológicos/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930840

RESUMO

Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto-enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.


Assuntos
Cimenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lamiaceae/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Timol/análogos & derivados , Timol/metabolismo , Cimenos/química , Sistema Enzimático do Citocromo P-450/genética , Lamiaceae/enzimologia , Lamiaceae/genética , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/genética , Timol/química
7.
Phytother Res ; 38(2): 556-591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919622

RESUMO

Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.


Assuntos
Neoplasias da Mama , Óleos Voláteis , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
8.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685252

RESUMO

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Assuntos
Monoterpenos Acíclicos , Eucaliptol , Eugenol , Monoterpenos , Monoterpenos/farmacologia , Monoterpenos/química , Animais , Eugenol/farmacologia , Eugenol/química , Eucaliptol/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Pediculus/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Timol/farmacologia , Timol/química , Micelas , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Nanopartículas/química , Infestações por Piolhos/tratamento farmacológico
9.
Chem Biodivers ; 21(2): e202301575, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116885

RESUMO

Bioactive compounds derived from medicinal plants have acquired immense attentiveness in drug discovery and development. The present study investigated in vitro and predicted in silico the antibacterial, antifungal, and antiviral properties of thymol and carvacrol, and assessed their safety. The performed microbiological assays against Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica Typhimurium revealed that the minimal inhibitory concentration values ranged from (0.078 to 0.312 mg/mL) and the minimal fungicidal concentration against Candida albicans was 0.625 mg/mL. Molecular docking simulations, stipulated that these compounds could inhibit bacterial replication and transcription functions by targeting DNA and RNA polymerases receptors with docking scores varying between (-5.1 to -6.9 kcal/mol). Studied hydroxylated monoterpenes could hinder C. albicans growth by impeding lanosterol 14α-demethylase enzyme and showed a (ΔG=-6.2 and -6.3 kcal/mol). Computational studies revealed that thymol and carvacrol could target the SARS-Cov-2 spike protein of the Omicron variant RBD domain. Molecular dynamics simulations disclosed that these compounds have a stable dynamic behavior over 100 ns as compared to remdesivir. Chemo-computational toxicity prediction using Protox II webserver indicated that thymol and carvacrol could be safely and effectively used as drug candidates to tackle bacterial, fungal, and viral infections as compared to chemical medication.


Assuntos
Cimenos , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus , Timol , Humanos , Timol/farmacologia , Timol/metabolismo , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Salmonella typhimurium , Candida albicans , Escherichia coli
10.
J Asian Nat Prod Res ; 26(3): 334-341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37449571

RESUMO

Two novel sesquiterpenes and one new monoterpene, together with eight reported compounds were isolated from dichloromethane-soluble extract of the aerial part of Artemisia tournefortiana Reichb. Their relative and absolute structures were elucidated based on the analysis of 1D and 2D NMR spectra, HRESIMS, and calculated electronic circular dichroism (ECD). Two sesquiterpenes (1 and 2) showed no inhibition effect in anti-inflammatory and cytotoxic activity tests. Three new terpenes (1-3) were tested for antibacterial activity, compounds 2 and 3 showed moderate antibacterial activities with minimum inhibitory concentrations (MICs) between 264 and 556 µg/ml.


Assuntos
Artemisia , Sesquiterpenos , Artemisia/química , Monoterpenos/farmacologia , Sesquiterpenos/química , Antibacterianos/química , Componentes Aéreos da Planta/química , Estrutura Molecular
11.
Inflammopharmacology ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039347

RESUMO

Ayapana triplinervis (M.Vahl) R.M.King & H.Rob. (Asteraceae), popularly known as japana, is a tropical, aromatic subshrub widely used as tea to combat some diseases. The essential oil was obtained from the leaves by hydrodistillation (3 h), and the chemical composition was analyzed by gas chromatography coupled to mass spectrometry. For in vivo assays, Mus musculus/Swiss mice were used to evaluate oral acute toxicological (at dose of 2000 mg/kg); peripheral and central analgesic for abdominal contortion (doses of 6.25, 12.5, 25, 50 and 100 mg/kg), hot plate test (12.5, 25, 50, and 100 mg/kg) and formalin (25, 50 and 100 mg/kg); open field test (100 mg/kg); and anti-inflammatory by ear swelling induced by xylene (6.25,12.5, 25, 50, and 100 mg/kg). The yield of A. triplinervis essential oil (AtEO) was 4.6%, and the oxygenated monoterpene 2,5-dimethoxy-p-cymene was the major compound in this study (63.6%). AtEO at a dose of 2,000 mg/kg orally did not change the behavior patterns or mortality of the animals; liver and kidney biochemical levels were similar to the control group, indicating no liver and kidney toxicity. Moreover, AtEO, at doses of 6.25, 12.5, 25, 50, and 100 mg/kg, reduced abdominal contortions by 21%, 54%, 91%, 58%, and 55%, respectively. In the hot plate test, AtEO showed a significant increase in latency time in the 60-min interval at doses of 25 mg/kg (11.3 ± 3.3 s) and 100 mg/kg (11.9 ± 0.9 s). In the first phase of the formalin test, AtEO decreased paw licking time at doses of 25, 50, and 100 mg/kg, with inhibition of 22%, 38%, and 83%; in the second phase, the same doses, decreased licking time with inhibition of 24%, 34%, and 76%. AtEO did not present a significant change in the spontaneous locomotor activity of the animals. Doses of 6.25, 12.5, 25, 50, and 100 mg/kg significantly reduced ear edema induced by topical application of xylene with percentages of 40%, 39%, 54%, 45%, and 45%, respectively. So, AtEO demonstrated low acute oral toxicity and exhibited significant antinociceptive and anti-inflammatory actions, consistent with the use of A. triplinervis in traditional medicine.

12.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611858

RESUMO

Nowadays, the effective processing of natural monoterpenes that constitute renewable biomass found in post-production waste into products that are starting materials for the synthesis of valuable compounds is a way to ensure independence from non-renewable fossil fuels and can contribute to reducing global carbon dioxide emissions. The presented research aims to determine, based on DFT calculations, the activity and reactivity of limonene, an organic substrate used in previous preparative analyses, in comparison to selected monoterpenes such as cymene, pinene, thymol, and menthol. The influence of the solvent model was also checked, and the bonds most susceptible to reaction were determined in the examined compounds. With regard to EHOMO, it was found that limonene reacts more easily than cymene or menthol but with more difficultly than thymol and pienene. The analysis of the global chemical reactivity descriptors "locates" the reactivity of limonene in the middle of the studied monoterpenes. It was observed that, among the tested compounds, the most reactive compound is thymol, while the least reactive is menthol. The demonstrated results can be a reference point for experimental work carried out using the discussed compounds, to focus research on those with the highest reactivity.

13.
Molecules ; 29(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39064999

RESUMO

Molecular hybridization is a widely used strategy in drug discovery and development processes that consists of the combination of two bioactive compounds toward a novel entity. In the current study, two libraries of hybrid derivatives coming from the linkage of sesquiterpene counterparts dihydroartemisinin and artesunic acid, with a series of monoterpenes, were synthesized and evaluated by cell viability assay on primary and metastatic melanoma cell lines. Almost all the obtained compounds showed micromolar antimelanoma activity and selectivity toward the metastatic form of this cancer. Four hybrid derivatives containing perillyl alcohol, citronellol, and nerol as monoterpene counterpart emerged as the best compounds of the series, with nerol being active in combination with both sesquiterpenes, dihydroartemisinin and artesunic acid. Preliminary studies on the mechanism of action have shown the dependence of the pharmacological activity of newly synthesized hybrids on the formation of carbon- and oxygen-centered radical species. This study demonstrated the positive modulation of the pharmacodynamic effect of artemisinin semisynthetic derivatives dihydroartemisinin and artesunic acid due to the hybridization with monoterpene counterparts.


Assuntos
Artemisininas , Monoterpenos , Artemisininas/farmacologia , Artemisininas/química , Monoterpenos/química , Monoterpenos/farmacologia , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/genética , Melanoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos
14.
Plant Mol Biol ; 111(1-2): 117-130, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271988

RESUMO

KEY MESSAGE: We isolated and functionally characterized a new ( +)-bornyl diphosphate synthase (( +)-LiBPPS) from Lavandula x intermedia. The in planta functions of ( +)-LiBPPS were evaluated in sense and antisense transgenic plants. The monoterpene ( +)-borneol contributes scent and medicinal properties to some plants. It also is the immediate precursor to camphor, another important determinant of aroma and medicinal properties in many plants. ( +)-Borneol is generated through the dephosphorylation of bornyl diphosphate (BPP), which is itself derived from geranyl diphosphate (GPP) by the enzyme ( +)-bornyl diphosphate synthase (( +)-BPPS). In this study we isolated and functionally characterized a novel ( +)-BPPS cDNA from Lavandula x intermedia. The cDNA excluding its transit peptide was expressed in E. coli, and the corresponding recombinant protein was purified with Ni-NTA agarose affinity chromatography. The recombinant ( +)-LiBPPS catalyzed the conversion of GPP to BPP as a major product, and a few minor products. We also investigated the in planta role of ( +)-LiBPPS in terpenoid metabolism through its overexpression in sense and antisense orientations in stably transformed Lavandula latifolia plants. The overexpression of ( +)-LiBPPS in antisense resulted in reduced production of ( +)-borneol and camphor without compromising plant growth and development. As anticipated, the overexpression of the gene led to enhanced production of borneol and camphor, although growth and development were severely impaired in most transgenic lines strongly and ectopically expressing the ( +)-LiBPPS transgene in sense. Our results demonstrate that LiBPPS would be useful in studies aimed at the production of recombinant borneol and camphor in vitro, and in metabolic engineering efforts aimed at lowering borneol and camphor production in plants. However, overexpression in sense may require a targeted expression of the gene in glandular trichomes using a trichome-specific promoter.


Assuntos
Cânfora , Lavandula , Cânfora/metabolismo , Lavandula/genética , DNA Complementar , Escherichia coli/genética , Difosfatos , Engenharia Metabólica , Proteínas de Plantas/metabolismo , Monoterpenos/metabolismo , Plantas/genética , Clonagem Molecular
15.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35022771

RESUMO

Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.


Assuntos
Rosa , Rosaceae , Monoterpenos Acíclicos , Domesticação , Rosa/genética , Rosa/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 325(6): H1446-H1460, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889254

RESUMO

Epidemiological evidence shows that residential proximity to greenspaces is associated with lower risk of all-cause and cardiovascular mortality; however, the mechanism(s) underlying this link remains unclear. Plants emit biogenic volatile organic compounds such as α-pinene that could elicit beneficial cardiovascular effects. To explore the role of α-pinene more directly, we studied the metabolism and the vascular effects of α-pinene. We found that exposure of mice to α-pinene (1 ppm, 6 h) generated two phase I oxidation metabolites, cis- and trans-verbenol [(1R,2R,5R)-verbenol and (1 R,2S,5R)-verbenol)] and myrtenol [(1S,5R)-(+)-myrtenol] that were identified in urine by GC-MS. Precontracted naïve murine male and female aorta and superior mesenteric artery (SMA) were relaxed robustly (60% tension reduction) by increasing concentrations of α-pinene, myrtenol, and verbenol to 0.3 mM, whereas 1 mM α-pinene was vasotoxic. The SMA was six times more sensitive than the aorta to α-pinene. Both myrtenol and verbenol were equally potent and efficacious as parent α-pinene in male and female SMA. The sensitive portion of the α-pinene-, myrtenol-, and verbenol-induced relaxations in male SMA was mediated by 1) endothelium, 2) eNOS-derived NO, and 3) guanylyl cyclase (GC) activity. Moreover, α-pinene activated the transient receptor potential ankyrin-1 (TRPA1) channel whereas the metabolites did not. Endothelial-derived NO regulates blood flow, blood pressure, and thrombosis, and it is plausible that inhaled (and ingested) α-pinene (or its metabolites) augments NO release to mediate the cardiovascular benefits of exposure to greenness.NEW & NOTEWORTHY A common plant-derived biogenic volatile organic compound, α-pinene, and two of its metabolites, myrtenol and verbenol, stimulate vasorelaxation in murine superior mesenteric artery. Both α-pinene- and its metabolites induce vasorelaxation by activation of the endothelium, nitric oxide, and guanylyl cyclase. α-Pinene also activates the transient receptor potential ankyrin-1. Positive associations between greenness exposure and human cardiovascular health may be a result of the vascular action of α-pinene and its metabolites, a novel consideration.


Assuntos
Anquirinas , Monoterpenos , Humanos , Animais , Camundongos , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Endotélio/metabolismo , Guanilato Ciclase
17.
New Phytol ; 238(5): 1762-1770, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36880374

RESUMO

Global warming and more frequent climate extremes have caused bark beetle outbreaks of unprecedented scale of these insects in many conifer forests world-wide. Conifers that have been weakened by drought and heat or damaged by storms are highly susceptible to bark beetle infestation. A large proportion of trees with impaired defences provides good conditions for beetle population build-up of beetles, but mechanisms driving host search of pioneer beetles are still uncertain in several species, including the Eurasian spruce bark beetle Ips typographus. Despite a two-century-long history of bark beetle research, we still lack a sufficient understanding of interactions between I. typographus and its host Norway spruce (Picea abies) to forecast future disturbance regimes and forest dynamics. Depending on the scale (habitat or patch) and beetle population state (endemic or epidemic), host selection is likely driven by a combination of pre and postlanding cues, including visual selection or olfactory detection (kairomones). Here, we discuss primary attraction mechanisms and how volatile emission profiles of Norway spruce may provide cues on tree vitality and suitability for attacks by I. typographus, in particular during the endemic phase. We identify several crucial knowledge gaps and provide a research agenda addressing the experimental challenges of such investigations.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Árvores , Sinais (Psicologia) , Casca de Planta
18.
Pharmacol Res ; 194: 106821, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329633

RESUMO

The essential oil of the resinous exudate from Pistacia lentiscus of Chios namely Chios Mastiha Essential Oil (CMEO), is a natural volatile oil rich in monoterpenes α-pinene, ß-myrcene, ß-pinene. In the present randomized controlled trial, we investigated the effects of CMEO on individuals with abdominal obesity and metabolic abnormalities i.e., dyslipidemia, hypertension, insulin resistance. Eligible patients (N = 94) were randomly assigned to either the intervention group, receiving capsules containing 200 mg of CMEO daily for 3 months adjunct to current treatment for metabolic disorder(s), or the control group. Anthropometric measurements, blood markers, and quality of life (QoL) were assessed. Statistical analysis was performed on an intention-to-treat basis. A significant improvement in blood lipid profile, namely triglycerides (p = 0.026) and low-density lipoprotein (p = 0.05) of the CMEO group versus controls was observed. Systolic blood pressure (p = 0.05) and alanine aminotransferase (p = 0.022) significantly decreased only after CMEO intake. Alike, weight decreased only in CMEO (p = 0.02), while mean changes in % body fat (p = 0.005) and visceral fat (p = 0.045) were significantly different between groups post-intervention. Lower oxidized LDL (p = 0.044) and higher adiponectin (p = 0.007) were recorded in CMEO with significant different mean changes between groups post-intervention. QoL, as assessed by Short Form-12 questionnaire was improved in the CMEO compared to control (p = 0.041 for Physical Composite Score, p = 0.035 for Mental Composite Score). No adverse effects were reported. An anti-obesity effect of CMEO, probably attributed to modulation of inflammatory and antioxidant processes, is suggested. Conclusively, CMEO can be safe and effective in regulating metabolic abnormalities, adjunct to treatment. (ClinicalTrials.gov. The effect of Mastiha oil in Metabolic Syndrome, ID Number: NCT04785573).


Assuntos
Anti-Hipertensivos , Óleos Voláteis , Humanos , Adulto , Qualidade de Vida , Óleos Voláteis/uso terapêutico , Resina Mástique , Obesidade/tratamento farmacológico
19.
Crit Rev Food Sci Nutr ; 63(10): 1352-1389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34387521

RESUMO

Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.


Assuntos
Monoterpenos , Plantas , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Plantas/metabolismo , Frutas/metabolismo , Anti-Inflamatórios/farmacologia
20.
Mar Drugs ; 21(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37755106

RESUMO

The chemical investigation of a red alga Portieria hornemannii enabled the identification of three new halogenated monoterpenes (1-3) along with two previously identified metabolites (4 and 5). Their structures were determined by spectroscopic analysis and also by utilizing single-crystal diffraction analysis and quantum chemical calculation, as well as by comparison with literature data. Further corrections for dichloro and dibromo carbons using the sorted training set (STS) method were established in this study to significantly improve the accuracy in GIAO 13C NMR calculation of compounds 1-3. To discover the potential bioactive metabolites from P. hornemannii, the anti-inflammatory activities of all compounds were examined. Compounds 1 and 3-5 showed significant anti-inflammatory activity to inhibit the production of pro-inflammatory cytokines in the LPS-stimulated mature dendritic cells.


Assuntos
Anti-Inflamatórios , Rodófitas , Anti-Inflamatórios/farmacologia , Carbono , Movimento Celular , Monoterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA