RESUMO
We report a solid-acid catalyzed aminolysis of epoxides under continuous-flow conditions. A titania-zirconia supported molybdenum oxide catalyst demonstrated exceptional substrate compatibility, enabling the synthesis of ß-amino alcohols in excellent yields with high catalyst durability. Characterization of the catalyst revealed the crucial role of the titania-zirconia ratio in optimizing its performance. Furthermore, this method was applied to the efficient, sequential-flow synthesis of a rivaroxaban intermediate (an oral anticoagulant and the first direct factor Xa inhibitor), combining a hydrogenation step with the aminolysis reaction without the need for intermediate isolation.
RESUMO
We describe the continuous-flow synthesis of (R)-tamsulosin, a blockbuster therapeutic drug employed for dysuria associated with urinary stones and benign prostatic hyperplasia, by utilizing sequential heterogeneous catalysis. Two heterogeneous catalysts have been developed for the synthesis, and the key step involves reductive amination of nitriles using dimethylpolysilane-modified Pd on activated carbon/calcium phosphate. Overall, (R)-tamsulosin was obtained in 60 % yield and 64 % ee (99 % ee after recrystallization) in a flow stream through four catalytic transformations without the need for the isolation or purification of any intermediates or byproduct.
Assuntos
Nitrilas , Aminação , Catálise , Hidrogenação , TansulosinaRESUMO
The multistep flow synthesis of complex molecules has gained momentum over the last few years. A wide range of reaction types and conditions have been integrated seamlessly on a single platform including in-line separation as well as monitoring. Beyond merely getting considered as 'flow version' of conventional 'one-pot synthesis', multistep flow synthesis has become the next generation tool for creating libraries of new molecules. Here we give a more 'engineering' look at the possibility of developing a 'unified multistep flow synthesis platform'. A detailed analysis of various scenarios is presented considering 4 different classes of drugs already reported in the literature. The possible complexities that an automated and controlled platform needs to handle are also discussed in detail. Three different design approaches are proposed: (i) one molecule at a time, (ii) many molecules at a time and (iii) cybernetic approach. Each approach would lead to the effortless integration of different synthesis stages and also at different synthesis scales. While one may expect such a platform to operate like a 'driverless car' or a 'robo chemist' or a 'transformer', in reality, such an envisaged system would be much more complex than these examples.
RESUMO
Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules.
Assuntos
Preparações Farmacêuticas/química , Gases/química , Substâncias Perigosas/química , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/síntese química , Solventes/químicaRESUMO
The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society.