Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223423

RESUMO

BACKGROUND AND AIMS: Charcot-Marie-Tooth (CMT) is a heterogeneous group of genetic neuropathies and is typically characterized by distal muscle weakness, sensory loss, pes cavus and areflexia. Herein we describe a case of CMT2CC presenting with proximal muscle weakness and equivocal electrophysiological features, that was misdiagnosed as chronic inflammatory demyelinating polyneuropathy (CIDP). CASE REPORT: A 30-year-old woman complained of proximal muscle weakness with difficulty climbing stairs. Neurological examination showed weakness in lower limb (LL) muscles, that was marked proximally and mild distally, and absence of deep tendon reflexes in the ankles. Nerve conduction studies (NCS) showed sensory-motor neuropathy with non-uniform NC velocity and a partial conduction block (CBs) in peroneal nerve and tibial nerves. Thus, a diagnosis of CIDP was entertained and the patient underwent ineffective treatment with intravenous immunoglobulins. At electrophysiological revaluation CB in peroneal nerve was undetectable as also distal CMAP had decreased whereas the CBs persisted in tibial nerves. Hypothesizing a hereditary neuropathy, we examined the proband's son, who presented mild weakness of distal and proximal muscles at lower limbs. Neurophysiological investigation showed findings consistent with an intermediate-axonal electrophysiological pattern. A targeted-NGS including 136 CMT genes showed the heterozygous frameshift mutation (c.3057dupG; p.K1020fs*43) in the NEFH gene, coding for the neurofilament heavy chain and causing CMT2CC. INTERPRETATION: Diagnosis of a genetic neuropathy may be challenging when clinical features are atypical and/or electrophysiological features are misleading. The most common misdiagnosis is CIDP. Our report suggests that also CMT2CC patients with proximal muscle weakness and equivocal electrophysiological features might be misdiagnosed as CIDP.

2.
Traffic ; 21(2): 231-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622527

RESUMO

Model organisms are increasingly used to study and understand how neurofilament (NF)-based neurological diseases develop. However, whether a NF homolog exists in C. elegans remains unclear. We characterize TAG-63 as a NF-like protein with sequence homologies to human NEFH carrying various coiled coils as well as clustered phosphorylation sites. TAG-63 also exhibits features of NFL such as a molecular weight of around 70 kD, the lack of KSP repeats and the ability to form 10 nm filamentous structures in transmission electron micrographs. An anti-NEFH antibody detects a band at the predicted molecular weight of TAG-63 in Western blots of whole worm lysates and this band cannot be detected in tag-63 knockout worms. A transcriptional tag-63 reporter expresses in a broad range of neurons, and various anti-NFH antibodies stain worm neurons with an overlapping expression of axonal vesicle transporter UNC-104(KIF1A). Cultured neurons grow shorter axons when incubating with drugs known to disintegrate the NF network and rhodamine-labeled in vitro reconstituted TAG-63 filaments disintegrate upon drug exposure. Speeds of UNC-104 motors are diminished in tag-63 mutant worms with visibly increased accumulations of motors along axons. UNC-104/TAG-63 and SNB-1/TAG-63 not only colocalize in neurons but also revealed positive BiFC (bimolecular fluorescence assay) signals. In summary, we identified and characterized TAG-63 in C. elegans, and demonstrate that lack of this protein limits axonal transport efficiencies. Additionally, this study would aid in developing NF-related disease models in the future.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Animais , Animais Geneticamente Modificados/fisiologia , Transporte Axonal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia
3.
Hum Mutat ; 43(1): 74-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747535

RESUMO

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.


Assuntos
Neurilemoma , Neurofibromatoses , Cromossomos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética
4.
J Peripher Nerv Syst ; 26(2): 231-234, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33987933

RESUMO

Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Mutação da Fase de Leitura/genética , Humanos , Itália , Proteínas de Neurofilamentos , Proteínas
5.
Neurol Sci ; 42(2): 757-763, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32780247

RESUMO

The purpose of this research is to explore the underlying genes of Charcot-Marie-Tooth (CMT). Technologies such as electrophysiological testing and gene sequencing have been applied. We identified a novel variant NEFH c.2215C>T(p.P739S)(HGNC:7737) in a heterozygous state, which was considered to be pathogenic for CMT2CC(OMIM:616924).The proband and his brothers presented with muscle atrophy of hand and calf and moderately decreased conduction velocities. By whole exome sequencing analysis, we found the novel missense pathogenic variant in the proband, his brother and mother. This report broadened current knowledge about intermediate CMT and the phenotypic spectrum of defects associated with NEFH. In addition, the proband carried other five variants {HSPD1c.695C>A (p.S232X), FLNCc.1073A>G (p.N358S), GUSBc.323C>A (p.P108Q), ACY1 c.1063-1G>A and APTX c.484-2A>T}, which have not been reported until now. The NEFH c.2215C>T (p.P739S) give us a new understanding of CMT, which might provide new therapeutic targets in the future.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Proteínas de Ligação a DNA , Heterozigoto , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Proteínas de Neurofilamentos , Proteínas Nucleares , Linhagem
6.
J Peripher Nerv Syst ; 22(3): 200-207, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28544463

RESUMO

Mutations in the NEFH gene encoding the heavy neurofilament protein are usually associated with neuronal damage and susceptibility to amyotrophic lateral sclerosis (ALS). Recently, frameshift variants in NEFH (p.Asp1004Glnfs*58 and p.Pro1008Alafs*56) have been reported to be the underlying cause of axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). The frameshift mutation resulted in a stop loss and translation of a cryptic amyloidogenic element (CAE) encoded by the 3' untranslated region (UTR). This study also identified a de novo c.3015_3027dup frameshift mutation predicting p.Lys1010Glnfs*57 in NEFH from a CMT2 family with an atypical clinical symptom of prominent proximal weakness. This mutation is located near the previously reported frameshift mutations, suggesting a mutational hotspot. Lower limb magnetic resonance imaging (MRI) revealed marked hyperintense signal changes in the thigh muscles compared with those in the calf muscles. Therefore, this study suggests that the stop loss and translational elongations by the 3' UTR of the NEFH mutations may be a relatively frequent genetic cause of axonal peripheral neuropathy with the specific characteristics of proximal dominant weakness.


Assuntos
Regiões 3' não Traduzidas/genética , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Mutação da Fase de Leitura/genética , Proteínas de Neurofilamentos/genética , Adulto , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Feminino , Humanos , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Condução Nervosa/genética , Linhagem
7.
Gastroenterology ; 145(6): 1424-35.e1-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012984

RESUMO

BACKGROUND & AIMS: Epigenetic silencing of tumor suppressor genes contributes to the pathogenesis of hepatocellular carcinoma (HCC). To identify clinically relevant tumor suppressor genes silenced by DNA methylation in HCC, we integrated DNA methylation data from human primary HCC samples with data on up-regulation of gene expression after epigenetic unmasking. METHODS: We performed genome-wide methylation analysis of 71 human HCC samples using the Illumina HumanBeadchip27K array; data were combined with those from microarray analysis of gene re-expression in 4 liver cancer cell lines after their exposure to reagents that reverse DNA methylation (epigenetic unmasking). RESULTS: Based on DNA methylation in primary HCC and gene re-expression in cell lines after epigenetic unmasking, we identified 13 candidate tumor suppressor genes. Subsequent validation led us to focus on functionally characterizing 2 candidates, sphingomyelin phosphodiesterase 3 (SMPD3) and neurofilament, heavy polypeptide (NEFH), which we found to behave as tumor suppressor genes in HCC. Overexpression of SMPD3 and NEFH by stable transfection of inducible constructs into an HCC cell line reduced cell proliferation by 50% and 20%, respectively (SMPD3, P = .003 and NEFH, P = .003). Conversely, knocking down expression of these genes with small hairpin RNA promoted cell invasion and migration in vitro (SMPD3, P = .0001 and NEFH, P = .022), and increased their ability to form tumors after subcutaneous injection or orthotopic transplantation into mice, confirming their role as tumor suppressor genes in HCC. Low levels of SMPD3 were associated with early recurrence of HCC after curative surgery in an independent patient cohort (P = .001; hazard ratio = 3.22; 95% confidence interval: 1.6-6.5 in multivariate analysis). CONCLUSIONS: Integrative genomic analysis identified SMPD3 and NEFH as tumor suppressor genes in HCC. We provide evidence that SMPD3 is a potent tumor suppressor gene that could affect tumor aggressiveness; a reduced level of SMPD3 is an independent prognostic factor for early recurrence of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA/genética , DNA de Neoplasias/genética , Epigenômica/métodos , Genes Supressores de Tumor , Estudo de Associação Genômica Ampla/métodos , Neoplasias Hepáticas/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/genética , Prognóstico , Recidiva , Esfingomielina Fosfodiesterase/genética
8.
Int J Biol Sci ; 20(9): 3638-3655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993562

RESUMO

Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.


Assuntos
Proteínas Argonautas , Proliferação de Células , Neoplasias de Próstata Resistentes à Castração , RNA Interferente Pequeno , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos , Apoptose , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , RNA de Interação com Piwi
9.
Surg Neurol Int ; 13: 553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600740

RESUMO

Background: Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. SACS mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to NEFH and SACS gene mutation to CMT in Vietnamese patients, and the diagnosis of CMT and ARSACS in the clinical setting still overlapped. Case Description: We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on NEFH and SACS genes to confirm the presence of selected variants on their parents, we identified a novel missense variant NEFH c.1925C>T (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive SACS variants (SACS c.13174C>T, causing missense variant, and SACS c.11343del, causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel NEFH variant and biallelic SACS variants. Conclusion: We concluded that this novel NEFH variant is likely benign, and biallelic SACS mutation (c.13174C>T and c.11343del) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of NEFH-related and SACS-related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.

10.
Mol Brain ; 11(1): 43, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029677

RESUMO

Neurofilaments (NFs) are the most abundant cytoskeletal component of vertebrate myelinated axons. NFs function by determining axonal caliber, promoting axonal growth and forming a 3-dimensional lattice that supports the organization of cytoplasmic organelles. The stoichiometry of NF protein subunits (NFL, NFM and NFH) has to be tightly controlled to avoid the formation of NF neuronal cytoplasmic inclusions (NCIs), axonal degeneration and neuronal death, all pathological hallmarks of amyotrophic lateral sclerosis (ALS). The post-transcriptional control of NF transcripts is critical for regulating normal levels of NF proteins. Previously, we showed that miRNAs that are dysregulated in ALS spinal cord regulate the levels of NEFL mRNA. In order to complete the understanding of altered NF expression in ALS, in this study we have investigated the regulation of NEFM and NEFH mRNA levels by miRNAs. We observed that a small group of ALS-linked miRNAs that are expressed in human spinal motor neurons directly regulate NEFM and NEFH transcript levels in a manner that is associated with an increase in NFM and NFH protein levels in ALS spinal cord homogenates. In concert with previous observations demonstrating the suppression of NEFL mRNA steady state levels in ALS, these observations provide support for the hypothesis that the dysregulation of miRNAs in spinal motor neurons in ALS fundamentally alters the stoichiometry of NF expression, leading to the formation of pathological NCIs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas de Neurofilamentos/genética , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Sequência de Bases , Feminino , Células HEK293 , Humanos , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Schizophr Res ; 177(1-3): 88-97, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27236410

RESUMO

Schizophrenia constitutes a complex disease. Negative and cognitive symptoms are enduring and debilitating components of the disorder, highly associated to disability and burden. Disrupted neurotransmission circuits in dorsolateral prefrontal cortex (DLPFC) have been related to these symptoms. To identify candidates altered in schizophrenia, we performed a pilot proteomic analysis on postmortem human DLPFC tissue from patients with schizophrenia (n=4) and control (n=4) subjects in a pool design using differential isotope peptide labelling followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). We quantified 1315 proteins with two or more unique peptides, 116 of which showed altered changes. Of these altered proteins, we selected four with potential roles on cell signaling, neuronal development and synapse functioning for further validation: casein kinase I isoform epsilon (CSNK1E), fatty acid-binding protein 4 (FABP4), neurofilament triplet H protein (NEFH), and retinal dehydrogenase 1 (ALDH1A1). Immunoblot validation confirmed our proteomic findings of these proteins being decreased in abundance in the schizophrenia samples. Additionally, we conducted immunoblot validation of these candidates on an independent sample cohort comprising 23 patients with chronic schizophrenia and 23 matched controls. In this second cohort, CSNK1E, FABP4 and NEFH were reduced in the schizophrenia group while ALDH1A1 did not significantly change. This study provides evidence indicating these proteins are decreased in schizophrenia: CSNK1E, involved in circadian molecular clock signaling, FABP4 with possible implication in synapse functioning, and NEFH, important for cytoarchitecture organization. Hence, these findings suggest the possible implication of these proteins in the cognitive and/or negative symptoms in schizophrenia.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Neurofilamentos/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Cromatografia Líquida , Estudos de Coortes , Feminino , Humanos , Immunoblotting , Masculino , Projetos Piloto , Proteoma , Proteômica , Retinal Desidrogenase , Espectrometria de Massas em Tandem
12.
Epigenetics ; 10(7): 622-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25985363

RESUMO

Neurofilament heavy polypeptide (NEFH) has recently been identified as a candidate DNA hypermethylated gene within the functional breast cancer hypermethylome. NEFH exists in a complex with neurofilament medium polypeptide (NEFM) and neurofilament light polypeptide (NEFL) to form neurofilaments, which are structural components of the cytoskeleton in mature neurons. Recent studies reported the deregulation of these proteins in several malignancies, suggesting that neurofilaments may have a role in other cell types as well. Using a comprehensive approach, we studied the epigenetic inactivation of neurofilament genes in breast cancer and the functional significance of this event. We report that DNA methylation-associated silencing of NEFH, NEFL, and NEFM in breast cancer is frequent, cancer-specific, and correlates with clinical features of disease progression. DNA methylation-mediated inactivation of these genes occurs also in multiple other cancer histologies including pancreas, gastric, and colon. Restoration of NEFH function, the major subunit of the neurofilament complex, reduces proliferation and growth of breast cancer cells and arrests them in Go/G1 phase of the cell cycle along with a reduction in migration and invasion. These findings suggest that DNA methylation-mediated silencing of the neurofilament genes NEFH, NEFM, and NEFL are frequent events that may contribute to the progression of breast cancer and possibly other malignancies.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Epigênese Genética , Inativação Gênica , Proteínas de Neurofilamentos/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Humanos , Filamentos Intermediários/patologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA