Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.012
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 55(2): 224-236.e5, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34995475

RESUMO

During gram-negative septicemia, interactions between platelets and neutrophils initiate a detrimental feedback loop that sustains neutrophil extracellular trap (NET) induction, disseminated intravascular coagulation, and inflammation. Understanding intracellular pathways that control platelet-neutrophil interactions is essential for identifying new therapeutic targets. Here, we found that thrombin signaling induced activation of the transcription factor NFAT in platelets. Using genetic and pharmacologic approaches, as well as iNFATuation, a newly developed mouse model in which NFAT activation can be abrogated in a cell-specific manner, we demonstrated that NFAT inhibition in activated murine and human platelets enhanced their activation and aggregation, as well as their interactions with neutrophils and NET induction. During gram-negative septicemia, NFAT inhibition in platelets promoted disease severity by increasing disseminated coagulation and NETosis. NFAT inhibition also partially restored coagulation ex vivo in patients with hypoactive platelets. Our results define non-transcriptional roles for NFAT that could be harnessed to address pressing clinical needs.


Assuntos
Plaquetas/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Sepse/patologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Comunicação Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação , Camundongos , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/metabolismo , Receptores de Trombina/metabolismo , Sepse/metabolismo
2.
Immunity ; 55(12): 2436-2453.e5, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462503

RESUMO

The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.


Assuntos
COVID-19 , Sepse , Animais , Camundongos , Actinas , Cromatina , Desoxirribonuclease I , DNA , Neutrófilos , Proteômica
3.
Immunity ; 52(4): 700-715.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294409

RESUMO

The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) that collects peritoneal contaminants and provides a first layer of immunological defense within the abdomen. Here, we investigated the mechanisms that mediate the capture of peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of omental stromal cells revealed that the surface of FALCs were covered by CXCL1+ mesothelial cells, which we termed FALC cover cells. Blockade of CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during zymosan-induced peritonitis. Inhibition of protein arginine deiminase 4, an enzyme important for the release of neutrophil extracellular traps, abolished neutrophil aggregation and the capture of peritoneal contaminants by omental FALCs. Analysis of omental samples from patients with acute appendicitis confirmed neutrophil recruitment and bacterial capture at FALCs. Thus, specialized omental mesothelial cells coordinate the recruitment and aggregation of neutrophils to capture peritoneal contaminants.


Assuntos
Apendicite/imunologia , Linfócitos/imunologia , Neutrófilos/imunologia , Omento/imunologia , Peritonite/imunologia , Células Estromais/imunologia , Doença Aguda , Animais , Apendicite/genética , Apendicite/microbiologia , Comunicação Celular/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Epitélio/imunologia , Epitélio/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Armadilhas Extracelulares/imunologia , Feminino , Expressão Gênica , Humanos , Linfócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/microbiologia , Omento/microbiologia , Peritonite/induzido quimicamente , Peritonite/genética , Peritonite/microbiologia , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais/microbiologia , Técnicas de Cultura de Tecidos , Zimosan/administração & dosagem
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38961813

RESUMO

Computational biological models have proven to be an invaluable tool for understanding and predicting the behaviour of many biological systems. While it may not be too challenging for experienced researchers to construct such models from scratch, it is not a straightforward task for early stage researchers. Design patterns are well-known techniques widely applied in software engineering as they provide a set of typical solutions to common problems in software design. In this paper, we collect and discuss common patterns that are usually used during the construction and execution of computational biological models. We adopt Petri nets as a modelling language to provide a visual illustration of each pattern; however, the ideas presented in this paper can also be implemented using other modelling formalisms. We provide two case studies for illustration purposes and show how these models can be built up from the presented smaller modules. We hope that the ideas discussed in this paper will help many researchers in building their own future models.


Assuntos
Biologia Computacional , Simulação por Computador , Modelos Biológicos , Software , Biologia Computacional/métodos , Algoritmos , Humanos
5.
Proc Natl Acad Sci U S A ; 120(24): e2301312120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279269

RESUMO

Glycan alterations are associated with aging, neuropsychiatric, and neurodegenerative diseases, although the contributions of specific glycan structures to emotion and cognitive functions remain largely unknown. Here, we used a combination of chemistry and neurobiology to show that 4-O-sulfated chondroitin sulfate (CS) polysaccharides are critical regulators of perineuronal nets (PNNs) and synapse development in the mouse hippocampus, thereby affecting anxiety and cognitive abilities such as social memory. Brain-specific deletion of CS 4-O-sulfation in mice increased PNN densities in the area CA2 (cornu ammonis 2), leading to imbalanced excitatory-to-inhibitory synaptic ratios, reduced CREB activation, elevated anxiety, and social memory dysfunction. The impairments in PNN densities, CREB activity, and social memory were recapitulated by selective ablation of CS 4-O-sulfation in the CA2 region during adulthood. Notably, enzymatic pruning of the excess PNNs reduced anxiety levels and restored social memory, while chemical manipulation of CS 4-O-sulfation levels reversibly modulated PNN densities surrounding hippocampal neurons and the balance of excitatory and inhibitory synapses. These findings reveal key roles for CS 4-O-sulfation in adult brain plasticity, social memory, and anxiety regulation, and they suggest that targeting CS 4-O-sulfation may represent a strategy to address neuropsychiatric and neurodegenerative diseases associated with social cognitive dysfunction.


Assuntos
Matriz Extracelular , Doenças Neurodegenerativas , Camundongos , Animais , Matriz Extracelular/química , Neurônios/fisiologia , Hipocampo , Sulfatos de Condroitina/química
6.
Eur J Immunol ; 54(4): e2350582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279592

RESUMO

Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.


Assuntos
Armadilhas Extracelulares , Nanopartículas , Neutrófilos , Antígenos , Adjuvantes Imunológicos
7.
Eur J Immunol ; 54(2): e2350623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972111

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen ubiquitously present throughout nature. LecB, a fucose-, and mannose-binding lectin, is a prominent virulence factor of P. aeruginosa, which can be expressed on the bacterial surface but also be secreted. However, the LecB interaction with human immune cells remains to be characterized. Neutrophils comprise the first line of defense against infections and their production of reactive oxygen species (ROS) and release of extracellular traps (NETs) are critical antimicrobial mechanisms. When profiling the neutrophil glycome we found several glycoconjugates on granule and plasma membranes that could potentially act as LecB receptors. In line with this, we here show that soluble LecB can activate primed neutrophils to produce high levels of intracellular ROS (icROS), an effect that was inhibited by methyl fucoside. On the other hand, soluble LecB inhibits P. aeruginosa-induced icROS production. In support of that, during phagocytosis of wild-type and LecB-deficient P. aeruginosa, bacteria with LecB induced less icROS production as compared with bacteria lacking the lectin. Hence, LecB can either induce or inhibit icROS production in neutrophils depending on the circumstances, demonstrating a novel and potential role for LecB as an immunomodulator of neutrophil functional responses.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lectinas
8.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37482409

RESUMO

Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA-disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a 'hint' so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Bases de Dados Genéticas , Predisposição Genética para Doença
9.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38842874

RESUMO

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Retinopatia Diabética , Armadilhas Extracelulares , Camundongos Endogâmicos C57BL , Neutrófilos , Receptores de Formil Peptídeo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Armadilhas Extracelulares/metabolismo , Animais , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Humanos , Neutrófilos/metabolismo , Camundongos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Masculino , Receptores de Lipoxinas/metabolismo , Receptores de Lipoxinas/genética , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Feminino , Pessoa de Meia-Idade
10.
J Pathol ; 262(3): 362-376, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38229586

RESUMO

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Duodenais , Gastrinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/patologia , Gastrinoma/genética , Gastrinoma/metabolismo , Gastrinoma/patologia , Neuroimunomodulação , Interleucina-17 , Neoplasias Duodenais/genética , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
11.
Exp Cell Res ; 441(2): 114191, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094902

RESUMO

Neutrophil extracellular traps (NETs) are web-like structures composed of cytoplasmic contents, DNA chromatin and various granular proteins released by neutrophils in response to viruses, bacteria, immune complexes and cytokines. Studies have shown that NETs can promote the occurrence, development and metastasis of tumors. In this paper, the mechanism underlying the formation and degradation of NETs and the malignant biological behaviors of NETs, such as the promotion of tumor cell proliferation, epithelial mesenchymal transition, extracellular matrix remodeling, angiogenesis, immune evasion and tumor-related thrombosis, are described in detail. NETs are being increasingly studied as therapeutic targets for tumors. We have summarized strategies for targeting NETs or interfering with NET-cancer cell interactions and explored the potential application value of NETs as biomarkers in cancer diagnosis and treatment, as well as the relationship between NETs and therapeutic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Armadilhas Extracelulares , Neoplasias , Humanos , Armadilhas Extracelulares/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Progressão da Doença , Animais , Transição Epitelial-Mesenquimal , Neutrófilos/metabolismo , Neutrófilos/imunologia , Proliferação de Células
12.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38760318

RESUMO

Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.


Assuntos
Interneurônios , Parvalbuminas , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Interneurônios/patologia , Interneurônios/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Suicídio , Idoso , Autopsia , Maus-Tratos Infantis/psicologia , Adulto Jovem
13.
Semin Immunol ; 53: 101531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34836773

RESUMO

Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.


Assuntos
Helmintos , Neutrófilos , Animais , Humanos , Imunidade Inata
14.
Proc Natl Acad Sci U S A ; 119(33): e2122716119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960843

RESUMO

The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)-deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Endotélio Vascular , Armadilhas Extracelulares , Melanoma , Neutrófilos , Microambiente Tumoral , Animais , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento , Endotélio Vascular/fisiopatologia , Humanos , Melanoma/irrigação sanguínea , Melanoma/imunologia , Melanoma/patologia , Camundongos , Neutrófilos/imunologia , Permeabilidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-39140971

RESUMO

Perineuronal nets (PNNs), specialized extracellular matrix structures that envelop neurons, have recently been recognized as key players in the regulation of metabolism. This review explores the growing body of knowledge concerning PNNs and their role in metabolic control, drawing insights from recent research and relevant studies. The pivotal role of PNNs in the context of energy balance and whole-body blood glucose is examined. The review also highlights novel findings, including the effects of astroglia, microglia, sex and gonadal hormones, nutritional regulation, circadian rhythms and age on PNNs dynamics. These findings illuminate the complex and multifaceted role of PNNs in metabolic health.

16.
J Neurochem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317026

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by clinical symptoms of memory and cognitive deficiencies. Postmortem evaluation of AD brain tissue shows proteinopathy that closely associate with the progression of this dementing disorder, including the accumulation of extracellular beta amyloid (Aß) and intracellular hyperphosphorylated tau (pTau) with neurofibrillary tangles (NFTs). Current therapies targeting Aß have limited clinical efficacy and life-threatening side effects and highlight the need for alternative treatments targeting pTau and other pathophysiologic mechanisms driving AD pathogenesis. The brain's extracellular matrices (ECM), particularly perineuronal nets (PNNs), play a crucial role in brain functioning and neurocircuit stability, and reorganization of these unique PNN matrices has been associated with the progression of AD and accumulation of pTau in humans. We hypothesize that AD-associated changes in PNNs may in part be driven by the accumulation of pTau within the brain. In this work, we investigated whether the presence of pTau influenced PNN structural integrity and PNN chondroitin sulfate-glycosaminoglycan (CS-GAG) compositional changes in two transgenic mouse models expressing tauopathy-related AD pathology, PS19 (P301S) and Tau4RTg2652 mice. We show that PS19 mice exhibit an age-dependent loss of hippocampal PNN CS-GAGs, but not the underlying aggrecan core protein structures, in association with pTau accumulation, gliosis, and neurodegeneration. The loss of PNN CS-GAGs were linked to shifts in CS-GAG sulfation patterns to favor the neuroregenerative isomer, 2S6S-CS. Conversely, Tau4RTg2652 mice exhibit stable PNN structures and normal CS-GAG isomer composition despite robust pTau accumulation, suggesting a critical interaction between neuronal PNN glycan integrity and neighboring glial cell activation. Overall, our findings provide insights into the complex relationship between PNN CS-GAGs, pTau pathology, gliosis, and neurodegeneration in mouse models of tauopathy, and offer new therapeutic insights and targets for AD treatment.

17.
Cancer Sci ; 115(1): 36-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915266

RESUMO

Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70%-80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescence. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared with those with local disease. High NET formation at diagnosis predicted poor response to neoadjuvant chemotherapy, relapse, and death from disease (p < 0.05). NET formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared with pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NET formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS.


Assuntos
Armadilhas Extracelulares , Sarcoma de Ewing , Humanos , Criança , Sarcoma de Ewing/genética , Recidiva Local de Neoplasia , Prognóstico , Neutrófilos/patologia , Microambiente Tumoral
18.
Front Neuroendocrinol ; 71: 101097, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611808

RESUMO

The vocal control nucleus HVC in songbirds has emerged as a widespread model system to study adult brain plasticity in response to changes in the hormonal and social environment. I review here studies completed in my laboratory during the last decade that concern two aspects of this plasticity: changes in aggregations of extracellular matrix components surrounding the soma of inhibitory parvalbumin-positive neurons called perineuronal nets (PNN) and the production/incorporation of new neurons. Both features are modulated by the season, age, sex and endocrine status of the birds in correlation with changes in song structure and stability. Causal studies have also investigated the role of PNN and of new neurons in the control of song. Dissolving PNN with chondroitinase sulfate, a specific enzyme applied directly on HVC or depletion of new neurons by focalized X-ray irradiation both affected song structure but the amplitude of changes was limited and deserves further investigations.


Assuntos
Aves Canoras , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Aves Canoras/fisiologia , Neurônios , Plasticidade Neuronal/fisiologia , Neurogênese/fisiologia , Matriz Extracelular
19.
Clin Immunol ; 266: 110308, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002794

RESUMO

Psoriasis is a chronic inflammatory skin disease connected with immune dysregulation. Macrophages are key inflammatory cells in psoriasis but the specific mechanism of their activation is not fully understood. Neutrophil extracellular traps (NETs) have been shown to regulate macrophage function. Here, we found that NET deposition was increased in psoriasis lesions. Peptidylarginine deaminase 4 (PAD4, a key enzyme for NET formation) deficiency attenuated skin lesions and inflammation in an imiquimod-induced psoriatic mouse model. Furthermore, the STING signaling pathway was markedly activated in psoriasis and abolished by PAD4 deficiency. PAD4-deficient mice treated with the STING agonist DMXAA exhibited more severe symptoms and inflammation than control mice. Mechanistically, the STING inhibitor C-176 inhibited NET-induced macrophage inflammation and further inhibited the proliferation of HaCaT cells. Our findings suggest an important role of NETs in the pathogenesis of psoriasis, and activation of macrophage STING/NF-κB signaling pathway might involve in NETs related psoriasis.


Assuntos
Armadilhas Extracelulares , Inflamação , Macrófagos , Psoríase , Transdução de Sinais , Psoríase/imunologia , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Humanos , Macrófagos/imunologia , Inflamação/imunologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Imiquimode , Proteína-Arginina Desiminase do Tipo 4 , Modelos Animais de Doenças , Neutrófilos/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Feminino
20.
Clin Exp Immunol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110036

RESUMO

Neutrophil extracellular traps (NETs) are associated with rheumatoid arthritis pathogenesis and severity. Since homeostatic NET-forming neutrophils [NET+Ns] have beneficial roles in defense against pathogens, their distinction from pro-injury [NET+N] subtypes is important, especially if they are to be therapeutically-targeted. Having identified circulating, pro-injury DEspR+CD11b+ [NET+Ns] in patients with neutrophilic secondary tissue injury, we determined whether DEspR+ [NET+Ns] are present in RA-flares. Whole blood samples of patients with RA-flares on maintenance therapy (n=6), were analyzed by flow cytometry (FCM) and immunofluorescence cytology followed by semi-automated quantitative confocal microscopy (qIFC). We assessed clinical parameters, levels of neutrophils and [NET+Ns], and plasma S100A8/A9. qIFC detected circulating DEspR+CD11b+ neutrophils and [NET+Ns] in RA-flare patients but not healthy controls. DEspR+ [NET+Ns] were positive for citrullinated histone H3 (citH3+), extruded DNA, decondensed but recognizable polymorphic nuclei, and [NET+N] doublet-interactions in mostly non-ruptured NET-forming neutrophils. Circulating DNA+/DEspR+/CD11b+/citH3+ microvesicles (netMVs) were observed. FCM detected increased %DEspR+CD11b+ neutrophils and DEspR+ cell-cell doublets whose levels trended with DAS28 scores, as did plasma S100A8/A9 levels. This study identifies circulating DEspR+/CD11b+ neutrophils and [NET+Ns] in RA-flare patients on maintenance therapy. Detection of circulating DEspR+citH3+ [NET+Ns] and netMVs indicate a systemic neutrophilic source of citH3-antigen concordant with multi-joint RA pathogenesis. Increased S100A8/A9 alarmin levels are associated with cell injury and released upon NET-formation. As a ligand for TLR4, S100A8/A9 forms a positive feedback loop for TLR4-induced DEspR+ neutrophils. These data identify DEspR+ neutrophils and [NET+Ns] in RA pathogenesis as a potential biomarker and/or therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA