Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(11): e2306229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37922531

RESUMO

Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1  h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.

2.
Small ; 18(52): e2205388, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344463

RESUMO

Exploiting cost-effective, high-efficiency, and contamination-free semiconductors for photocatalytic nitrogen reduction reaction (N2 RR) is still a great challenge, especially in sacrificial-free system. On basis of the electron "acceptance-donation" concept, a boron-doped and carbon-deficient g-C3 N4 (Bx CvN) is herein developed through precise dopant and defect engineering. The optimized B15 CvN exhibisted an NH3 production rate of 135.3 µmol h-1  g-1 in pure water with nine-fold enhancement to the pristine graphitic carbon nitride (g-C3 N4 ), on account of the markedly elevated visible-light harvesting, N2 activation, and multi-directional photoinduced carriers transfer. The decorated B atoms with coexistent occupied and empty sp3 hybridized orbitals are theoretically proved to be in charge of the increase of N2 adsorption energy from -0.08 to -0.26 eV and the change in N2 adsorption model from one-way to two-way end-on pattern. Noticeably, the elaborate coordination of doped B atoms and carbon vacancies greatly facilitated the interlayer interaction and vertical charge migration of Bx CvN, which is distinctly revealed through the charge density difference calculations. The current study provides an alternative groundbreaking perspective for advancing photocatalytic N2 RR through the targeted configuration of the defect and dopant sites.

3.
Environ Res ; 215(Pt 1): 114154, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037916

RESUMO

The biochemical reduction of nitrite (NO2-) ions to ammonia (NH3) requires six electrons and is catalyzed by the cytochrome c NO2- reductase enzyme. This biological reaction inspired scientists to explore the reduction of nitrogen oxyanions, such as nitrate (NO3-) and NO2- in wastewater, to produce the more valuable NH3 product. It is widely known that copper (Cu)-based nanoparticles (NPs) are selective for the NO3- reduction reaction (NO3-RR), but the NO2-RR has not been well explored. Therefore, we attempted to address the electrocatalytic conversion of NO2- to NH3 using Cu@Cu2O core-shell NPs to simultaneously treat wastewater by removing NO2- and producing valuable NH3. The Cu@Cu2O core-shell NPs were constructed using the pulsed laser ablation of Cu sheet metal in water. The core-shell nanostructure of these particles was confirmed by various characterization techniques. Subsequently, the removal of NO2- and the ammonium (NH4+)-N yield rate were estimated using the Griess and indophenol blue methods, respectively. Impressively, the Cu@Cu2O core-shell NPs exhibited outstanding NO2-RR activity, demonstrating a maximum NO2- removal efficiency of approximately 94% and a high NH4+-N yield rate of approximately 0.03 mmol h-1.cm-2 at -1.6 V vs. a silver/silver chloride reference electrode under optimal conditions. The proposed NO2-RR mechanism revealed that the (111) facet of Cu favors the selective conversion of NO2- to NH3 via a six-electron transfer. This investigation may offer a new insight for the rational design and detailed mechanistic understanding of electrocatalyst architecture for the effective conversion of NO2- to NH4+.


Assuntos
Compostos de Amônio , Nanoestruturas , Amônia/química , Cobre/química , Citocromos c/metabolismo , Indofenol , Lasers , Nitratos/análise , Nitritos , Nitrogênio , Dióxido de Nitrogênio , Oxirredução , Oxirredutases/metabolismo , Prata , Águas Residuárias , Água
4.
Angew Chem Int Ed Engl ; 61(18): e202202087, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35212442

RESUMO

Electrocatalytic NO reduction is regarded as an attractive strategy to degrade the NO contaminant into useful NH3 , but the lack of efficient and stable electrocatalysts to facilitate such multiple proton-coupled electron-transfer processes impedes its applications. Here, we report on developing amorphous B2.6 C supported on a TiO2 nanoarray on a Ti plate (a-B2.6 C@TiO2 /Ti) as an NH3 -producing nanocatalyst with appreciable activity and durability toward the NO electroreduction. It shows a yield of 3678.6 µg h-1 cm-2 and a FE of 87.6 %, superior to TiO2 /Ti (563.5 µg h-1 cm-2 , 42.6 %) and a-B2.6 C/Ti (2499.2 µg h-1 cm-2 , 85.6 %). An a-B2.6 C@TiO2 /Ti-based Zn-NO battery achieves a power density of 1.7 mW cm-2 with an NH3 yield of 1125 µg h-1 cm-2 . An in-depth understanding of catalytic mechanisms is gained by theoretical calculations.

5.
J Colloid Interface Sci ; 663: 405-412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412726

RESUMO

Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 µmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.

6.
Adv Mater ; 35(1): e2207305, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281796

RESUMO

Developing highly active and selective electrocatalysts for electrochemical nitrate reduction reaction (NITRR) is very important for synthesizing recyclable ammonia (NH3 ) in an economic and environmentally friendly manner. Despite some encouraging progress, their activity and selectivity have been remarkably slower than expected. In this manuscript, mesoporous palladium-nonmetal (meso-PdX) nanocubes (NCs) are reported as a new series of highly efficient electrocatalysts for selective nitrate reduction reaction (NITRR) electrocatalysis to NH3 . The samples feature uniformly alloyed compositions and highly penetrated mesopores with abundant highly active sites and optimized electronic structures. The best meso-PdN NCs hold an outstanding NITRR activity and selectivity with a remarkable NH3 Faradaic efficiency of 96.1% and a yield rate of 3760 µg h-1 mg-1 , suppressing the state-of-the-art electrocatalysts. Meanwhile, meso-PdN NCs are electrocatalytically stable, retaining well the activity and selectivity of NO3 - -to-NH3 electrocatalysis for more than 20 cycles. Detailed mechanism studies ascribe the superior performance to combined compositional and structural synergies of meso-PdN NCs that not only promote the adsorption (reactivity) of NO3 - and the desorption of NH3 but also increase the retention time of key intermediates for the deeper NITRR electrocatalysis to NH3 through an eight-electron pathway.

7.
J Colloid Interface Sci ; 615: 636-642, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35158194

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) is an attractive alternative to NH3 production under ambient conditions. Although noble metal-based catalysts exhibit decent NO3RR performance to NH3, the high cost and insufficient supply obstruct its large-scale application. In this work, we report that Fe-doped Co3O4 nanoarray efficiently catalyzes NO3RR for NH3 production in neutral conditions. It achieves a large NH3 yield of 0.624 mg mgcat.-1h-1 and high Faradaic efficiency of 95.5% at -0.7 V versus reversible hydrogen electrode. Besides, this catalyst exhibits good NO3RR stability. Density functional theory calculations reveal favorable adsorption of NO3- on Fe-doped Co3O4, which is conducive to NH3 production in the NO3RR process.

8.
Adv Mater ; : e1803498, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095855

RESUMO

The electrochemical reduction of N2 into NH3 production under ambient conditions represents an attractive prospect for the fixation of N2 . However, this process suffers from low yield rate of NH3 over reported electrocatalysts. In this work, a record-high activity for N2 electrochemical reduction over Ru single atoms distributed on nitrogen-doped carbon (Ru SAs/N-C) is reported. At -0.2 V versus reversible hydrogen electrode, Ru SAs/N-C achieves a Faradaic efficiency of 29.6% for NH3 production with partial current density of -0.13 mA cm-2 . Notably, the yield rate of Ru SAs/N-C reaches 120.9 µgNH3 mgcat.-1 h-1, which is one order of magnitude higher than the highest value ever reported. This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single-atom catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA