RESUMO
Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
Assuntos
Anatomia Artística , Atlas como Assunto , Desenvolvimento Embrionário , Endoderma/embriologia , Modelos Biológicos , Organoides/embriologia , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Feminino , Gastrulação , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Intestinos/embriologia , Masculino , Mesoderma/embriologia , Pessoa de Meia-Idade , Neuregulina-1/metabolismo , Especificidade de Órgãos , Células-Tronco Pluripotentes/citologiaRESUMO
Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismoRESUMO
The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.
Assuntos
Dinamina II , Neuregulina-1 , Camundongos , Humanos , Animais , Dinamina II/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Peixe-Zebra/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , HipertrofiaRESUMO
Stimulating cardiomyocyte proliferation in the adult heart has emerged as a promising strategy for cardiac regeneration following myocardial infarction (MI). The NRG1-ERBB4 signaling pathway has been implicated in the regulation of cardiomyocyte proliferation. However, the therapeutic potential of recombinant human NRG1 (rhNRG1) has been limited due to the low expression of ERBB4 in adult cardiomyocytes. Here, we investigated whether a fusion protein of rhNRG1 and an ERBB3 inhibitor (rhNRG1-HER3i) could enhance the affinity of NRG1 for ERBB4 and promote adult cardiomyocyte proliferation. In vitro and in vivo experiments were conducted using postnatal day 1 (P1), P7, and adult cardiomyocytes. Western blot analysis was performed to assess the expression and activity of ERBB4. Cardiomyocyte proliferation was evaluated using Ki67 and pH 3 immunostaining, while fibrosis was assessed using Masson staining. Our results indicate that rhNRG1-HER3i, but not rhNRG1, promoted P7 and adult cardiomyocyte proliferation. Furthermore, rhNRG1-HER3i improved cardiac function and reduced cardiac fibrosis in post-MI hearts. Administration of rhNRG1-HER3i inhibited ERBB3 phosphorylation while increasing ERBB4 phosphorylation in adult mouse hearts. Additionally, rhNRG1-HER3i enhanced angiogenesis following MI compared to rhNRG1. In conclusion, our findings suggest that rhNRG1-HER3i is a viable therapeutic approach for promoting adult cardiomyocyte proliferation and treating MI by enhancing NRG1-ERBB4 signaling pathway.
Assuntos
Cardiomiopatias , Infarto do Miocárdio , Camundongos , Animais , Humanos , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Neuregulina-1/uso terapêutico , Cardiomiopatias/metabolismo , Receptor ErbB-4/metabolismoRESUMO
The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Basidiomycota , Populus , Nicotiana/genética , Basidiomycota/genética , Transcriptoma , Plastídeos , Populus/genética , Populus/microbiologia , Doenças das Plantas/microbiologiaRESUMO
It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.
Assuntos
Bainha de Mielina , Remielinização , Camundongos , Animais , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Nervo Isquiático/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismoRESUMO
The growth factor Neuregulin-1 (NRG1) has pleiotropic roles in proliferation and differentiation of the stem cell niche in different tissues. It has been implicated in gut, brain and muscle development and repair. Six isoform classes of NRG1 and over 28 protein isoforms have been previously described. Here we report a new class of NRG1, designated NRG1-VII to denote that these NRG1 isoforms arise from a myeloid-specific transcriptional start site (TSS) previously uncharacterized. Long-read sequencing was used to identify eight high-confidence NRG1-VII transcripts. These transcripts presented major structural differences from one another, through the use of cassette exons and alternative stop codons. Expression of NRG1-VII was confirmed in primary human monocytes and tissue resident macrophages and induced pluripotent stem cell-derived macrophages (iPSC-derived macrophages). Isoform switching via cassette exon usage and alternate polyadenylation was apparent during monocyte maturation and macrophage differentiation. NRG1-VII is the major class expressed by the myeloid lineage, including tissue-resident macrophages. Analysis of public gene expression data indicates that monocytes and macrophages are a primary source of NRG1. The size and structure of class VII isoforms suggests that they may be more diffusible through tissues than other NRG1 classes. However, the specific roles of class VII variants in tissue homeostasis and repair have not yet been determined.
Assuntos
Diferenciação Celular , Macrófagos , Neuregulina-1 , Isoformas de Proteínas , Humanos , Neuregulina-1/metabolismo , Neuregulina-1/genética , Macrófagos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Sítio de Iniciação de Transcrição , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Éxons/genética , Processamento Alternativo , Células Mieloides/metabolismo , Células Mieloides/citologiaRESUMO
BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.
Assuntos
Esclerose Lateral Amiotrófica , Neoplasias , Neuregulina-1 , Receptor ErbB-4 , Humanos , Esclerose Lateral Amiotrófica/genética , Neoplasias/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transdução de SinaisRESUMO
Neuregulin (NRG)-1 plays fundamental roles in several organ systems after binding to its receptors, ErbB2 and ErbB4. This study examines the role of NRG-1 in atopic dermatitis (AD), a chronic skin disease that causes dryness, pruritus, and inflammation. In mice administered Der p 38, the skin presents AD-like symptoms including filaggrin downregulation and infiltration of neutrophils and eosinophils. Noticeably, there is an increased expression of NRG-1, ErbB2, and ErbB4 in the skin. Upregulation of these proteins is significantly correlated to the clinical skin severity score. In human keratinocyte HaCaT cells, exposure to Der p 38 decreased filaggrin expression, and NRG-1 alone had no effect on the expression. However, co-treatment of Der p 38 with NRG-1 enhanced the filaggrin expression decreased by Der p 38. Pre-treatment with AG879 (an ErbB2 inhibitor) or ErbB4 siRNA blocked the recovery of filaggrin expression in the cells after co-treatment with Der p 38 and NRG-1. Der p 38 treatment enhanced the secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1). Co-treatment of Der p 38 with NRG-1 lowered the cytokine secretion increased by Der p 38, although NRG-1 alone was not effective on cytokine alteration. Neutrophil apoptosis was not altered by NRG-1 or supernatants of cells treated with NRG-1, but the cell supernatants co-treated with Der p 38 and NRG-1 blocked the anti-apoptotic effects of Der p 38-treated supernatants on neutrophils, which was involved in the activation of caspase 9 and caspase 3. Taken together, we determined that NRG-1 has anti-inflammatory effects in AD triggered by Der p 38. These results will pave the way to understanding the functions of NRG-1 and in the future development of AD treatment.
Assuntos
Dermatite Atópica , Camundongos , Animais , Humanos , Dermatite Atópica/genética , Proteínas Filagrinas , Neuregulina-1/farmacologia , Neuregulina-1/metabolismo , Neuregulina-1/uso terapêutico , Queratinócitos/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/farmacologia , Anti-Inflamatórios/farmacologiaRESUMO
Invasive mucinous adenocarcinoma (IMA) is a relatively rare subtype of lung adenocarcinoma, composed of goblet and/or columnar tumour cells containing abundant intracytoplasmic mucin vacuoles. While a majority of IMAs are driven by KRAS mutations, recent studies have identified distinct genomic alterations, such as NRG1 and ERBB2 fusions. IMAs also more frequently present as a pneumonic-like pattern with multifocal and multilobar involvement, and comparative genomic profiling predominantly shows a clonal relationship, suggesting intrapulmonary metastases rather than synchronous primary tumours. Accordingly, these unique features require different therapeutic approaches when compared to nonmucinous adenocarcinomas in general. In this article, we review recent updates on the histopathological, clinical, and molecular features of IMAs, and also highlight some unresolved issues for future studies.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma Mucinoso , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , MutaçãoRESUMO
BACKGROUND: Patients with Alzheimer's disease (AD) are often co-morbid with unprovoked seizures, making clinical diagnosis and management difficult. Although it has an important role in both AD and epilepsy, abnormal γ-aminobutyric acid (GABA)ergic transmission is recognized only as a compensative change for glutamatergic damage. Neuregulin 1 (NRG1)-ErbB4 signaling can promote GABA release and suppress epileptogenesis, but its effects on cognition in AD are still controversial. METHODS: Four-month-old APPswe/PS1dE9 mice (APP mice) were used as animal models in the early stage of AD in this study. Acute/chronic chemical-kindling epilepsy models were established with pentylenetetrazol. Electroencephalogram and Racine scores were performed to assess seizures. Behavioral tests were used to assess cognition and emotion. Electrophysiology, western blot and immunofluorescence were performed to detect the alterations in synapses, GABAergic system components and NRG1-ErbB4 signaling. Furthermore, NRG1 was administrated intracerebroventricularly into APP mice and then its antiepileptic and cognitive effects were evaluated. RESULTS: APP mice had increased susceptibility to epilepsy and resulting hippocampal synaptic damage and cognitive impairment. Electrophysiological analysis revealed decreased GABAergic transmission in the hippocampus. This abnormal GABAergic transmission involved a reduction in the number of parvalbumin interneurons (PV+ Ins) and decreased levels of GABA synthesis and transport. We also found impaired NRG1-ErbB4 signaling which mediated by PV+ Ins loss. And NRG1 administration could effectively reduce seizures and improve cognition in four-month-old APP mice. CONCLUSION: Our results indicated that abnormal GABAergic transmission mediated hippocampal hyperexcitability, further excitation/inhibition imbalance, and promoted epileptogenesis in the early stage of AD. Appropriate NRG1 administration could down-regulate seizure susceptibility and rescue cognitive function. Our study provided a potential direction for intervening in the co-morbidity of AD and epilepsy.
Assuntos
Doença de Alzheimer , Epilepsia , Humanos , Camundongos , Animais , Lactente , Receptor ErbB-4/metabolismo , Doença de Alzheimer/complicações , Hipocampo/metabolismo , Ácido gama-Aminobutírico , Convulsões , Neuregulina-1/metabolismoRESUMO
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.
Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismoRESUMO
Neuregulin 1 (NRG1) fusions are oncogenic drivers that have been detected in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC) and other solid tumors. NRG1 fusions are rare, occurring in less than 1% of solid tumors. Patients with NRG1 fusion positive (NRG1+) cancer have limited therapeutic options. Zenocutuzumab is a novel, bispecific IgG1 antibody that targets both HER2 and HER3 proteins and inhibits NRG1 binding through a 'Dock & Block®' mechanism of action. Here, we describe the rationale and design of the phase II component of the eNRGy trial, part of the overall, open-label phase I/II, multicenter trial exploring the safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity and antitumor activity of zenocutuzumab in patients with NRG1+ NSCLC, PDAC or other solid tumors.
eNRGy: a clinical trial of zenocutuzumab for cancer caused by NRG1 gene fusionsNRG1 gene fusions are rare mutations that cause cancer cells to grow. These fusions are found in many different types of cancer. Tumors with NRG1 gene fusions do not respond well to standard treatment options. Zenocutuzumab, or Zeno, is a treatment that is being tested to see if it can stop cancer that is growing because of NRG1 gene fusions. Here, we describe the reasoning for and design of an ongoing clinical trial (eNRGy) designed to study the efficacy (how well it works) and safety of Zeno in patients with cancer that has NRG1 gene fusions. The eNRGy trial is recruiting patients with cancer that has NRG1 gene fusions, including non-small-cell lung cancer, pancreatic cancer and others. Patients who join this trial will receive Zeno once every 2 weeks until their cancer grows. The main goal (primary end point) of this trial is to determine the percentage of patients whose tumors decrease in size by 30% or more. The eNRGy trial is currently enrolling patients. For more information, refer to ClinicalTrials.gov (Identifier: NCT02912949), visit https://nrg1.com/, or call 1-833-NRG-1234.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neuregulina-1 , Humanos , Neuregulina-1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Feminino , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Masculino , Receptor ErbB-3/genética , Receptor ErbB-2/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Proteínas de Fusão Oncogênica/genética , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Adulto , Pessoa de Meia-IdadeRESUMO
BACKGROUND: We aimed to investigate the effect and potential mechanism of enhancing Neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression on the differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. METHODS: We utilized CRISPR-CAS9 technology to knock in ErbB4 and obtained a single-cell clone IPSN-AAVS1-CMV-ErbB4 (iPSCs-ErbB4). Subsequently, we induced the differentiation of iPSCs into cardiomyocytes and quantified the number of beating embryoid bodies. Furthermore, quantitative real-time PCR assessed the expression of cardiomyocyte markers, including ANP (atrial natriuretic peptide), Nkx2.5 (NK2 transcription factor related locus 5), and GATA4 (GATA binding protein 4). On the 14th day of differentiation, we observed the α-MHC (α-myosin heavy chain)-positive area using immunofluorescent staining and conducted western blotting to detect the expression of cTnT (cardiac troponin) protein and PI3K/Akt signaling pathway-related proteins. Additionally, we intervened the iPSCs-ErbB4 + NRG1 group with the PI3K/Akt inhibitor LY294002 and observed alterations in the expression of cardiomyocyte differentiation-related genes. RESULTS: The number of beating embryoid bodies increased after promoting the expression of NRG1/ErbB4 compared to the iPSCs control group. Cardiomyocyte markers ANP, Nkx2.5, and GATA4 significantly increased on day 14 of differentiation, and the positive area of α-MHC was three times that of the iPSCs control group. Moreover, there was a marked increase in cTnT protein expression. However, there was no significant difference in cardiomyocyte differentiation between the iPSCs-ErbB4 group and the iPSCs control group. Akt phosphorylation was significantly increased in the iPSCs-ErbB4 + NRG1 group. LY294002 significantly reversed the enhancing effect of NRG1/ErbB4 overexpression on Akt phosphorylation as well as the increase in α-MHC and cTnT expression. CONCLUSIONS: In conclusion, promoting the expression of NRG1/ErbB4 induced the differentiation of iPSC into cardiomyocytes, possibly through modulation of the PI3K/Akt signaling pathway.
Assuntos
Diferenciação Celular , Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Neuregulina-1 , Proteínas Proto-Oncogênicas c-akt , Receptor ErbB-4 , Transdução de Sinais , Humanos , Fator Natriurético Atrial/metabolismo , Linhagem Celular , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Neuregulina-1/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Troponina T/metabolismo , Troponina T/genéticaRESUMO
Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships. In the present study, we report the biotransformation of euphoboetirane A (4) and epoxyboetirane A (5), two lathyrane diterpenoids isolated from Euphorbia boetica, by Mucor circinelloides MC NRRL3631. Our findings revealed the production of nine biotransformation products (6-14), including jatrophane derivatives originated through an unprecedented rearrangement from the parent lathyranes. The chemical structures and absolute configurations of the new compounds were elucidated through comprehensive analysis using NMR and ECD spectroscopy, as well as MS. The study evaluated how principal metabolites and their derivatives affect TGFα and NRG1 release, as well as their potential to promote proliferation or differentiation in cultures of NSC isolated from the SVZ of adult mice. In order to shed some light on the mechanisms underlying the ability of 12 as a neurogenic compound, the interactions of selected compounds with PKC δ-C1B were analyzed through molecular docking and molecular dynamics. Based on these, it clearly appears that the ability of compound 12 to form both acceptor and donor hydrogen bonds with certain amino acid residues in the enzyme pocket leads to a higher affinity compound-PKC complex, which correlates with the observed biological activity.
RESUMO
Olfactory dysfunction is increasingly recognized as an early indicator of Alzheimer's disease (AD). Aberrations in GABAergic function and the excitatory/inhibitory (E/I) balance within the olfactory bulb (OB) have been implicated in olfactory impairment during the initial stages of AD. While the neuregulin 1 (NRG1)/ErbB4 signaling pathway is known to regulate GABAergic transmission in the brain and is associated with various neuropsychiatric disorders, its specific role in early AD-related olfactory impairment remains incompletely understood. This study demonstrated that olfactory dysfunction preceded cognitive decline in young adult APP/PS1 mice and was characterized by reduced levels of NRG1 and ErbB4 in the OB. Further investigation revealed that deletion of ErbB4 in parvalbumin interneurons reduced GABAergic transmission and increased hyperexcitability in mitral and tufted cells (M/Ts) in the OB, thereby accelerating olfactory dysfunction in young adult APP/PS1 mice. Additionally, ErbB4 deficiency was associated with increased accumulation of Aß and BACE1-mediated cleavage of APP, along with enhanced CDK5 signaling in the OB. NRG1 infusion into the OB was found to enhance GABAergic transmission in M/Ts and alleviate olfactory dysfunction in young adult APP/PS1 mice. These findings underscore the critical role of NRG1/ErbB4 signaling in regulating GABAergic transmission and E/I balance within the OB, contributing to olfactory impairment in young adult APP/PS1 mice, and provide novel insights for early intervention strategies in AD. This work has shown that ErbB4 deficiency increased the burden of Aß, impaired GABAergic transmission, and disrupted the E/I balance of mitral and tufted cells (M/Ts) in the OB, ultimately resulting in olfactory dysfunction in young adult APP/PS1 mice. NRG1 could enhance GABAergic transmission, rescue E/I imbalance in M/Ts, and alleviate olfactory dysfunction in young adult APP/PS1 mice. OB: olfactory bulb, E/I: excitation/inhibition, Pr: probability of release, PV: parvalbumin interneurons, Aß: ß-amyloid, GABA: gamma-aminobutyric acid.
RESUMO
BACKGROUND: NRG1 fusions are rare oncogenic drivers in solid tumors, and the incidence of NRG1 fusions in non-small cell lung cancer (NSCLC) was 0.26%. It is essential to explore potential therapeutic strategies and efficacy predictors for NRG1 fusion-positive cancers. CASE PRESENTATION: We report an advanced lung adenocarcinoma patient harboring a novel NPTN-NRG1 fusion identified by RNA-based next-generation sequencing (NGS), which was not detected by DNA-based NGS at initial diagnosis. Transcriptomics data of the tissue biopsy showed NRG1α isoform accounted for 30% of total NRG1 reads, and NRG1ß isoform was undetectable. The patient received afatinib as fourth-line treatment and received a progression-free survival (PFS) of 14 months. CONCLUSIONS: This report supports afatinib can provide potential benefit for NRG1 fusion patients, and RNA-based NGS is an accurate and cost-effective strategy for fusion detection and isoform identification.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Afatinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , RNA , Neuregulina-1/genéticaRESUMO
OBJECTIVE: Few studies have reported the direct effect of C-X-C motif chemokine ligand 10 (CXCL10) and Neuregulin 1 (Nrg1) on neurons after spinal cord injury (SCI). This study reports the role of CXCL10 in the regulation of neuronal damage after SCI and the potential therapeutic effect of Nrg1. METHODS: The expression level of CXCL10 and Nrg1 in SCI mice was analyzed in the Gene Expression Omnibus DataSets, followed by immunohistochemical confirmation using a mouse SCI model. HT22 cells and NSC34 cells were treated with CXCL10 and Nrg1, individually or in combination, and then assayed for cell viability. The percentage of wound closure was determined through the cell scratch injury model using HT22 and NSC34 cells. Potential molecular mechanisms were also tested in response to either the individual administration of CXCL10 and Nrg1 or a mixture of both molecules. RESULTS: CXCL10 expression was significantly increased in both young and old mice subjected to SCI, while Nrg1 expression was significantly decreased. CXCL10 induced a decrease in cell viability, which was partially reversed by Nrg1. CXCL10 failed to inhibit scratch healing in HT22 and NSC34 cells, while Nrg1 promoted scratch healing. At the molecular level, CXCL10-activated cleaved caspase 9 and cleaved caspase 3 were both inhibited by Nrg1 through pERK1/2 signaling in HT22 and NSC34 cells. CONCLUSIONS: CXCL10 is upregulated in SCI. Despite the negative effect on cell viability, CXCL10 failed to inhibit the scratch healing of HT22 and NSC34 cells. Nrg1 may protect neurons by partially antagonizing the effect of CXCL10.
Assuntos
Neuregulina-1 , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Neuregulina-1/farmacologia , Neurônios/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , CamundongosRESUMO
Diabetic peripheral neuropathy (DPN) is a chronic complication associated with nerve dysfunction and uncontrolled hyperglycemia. Unfortunately, due to its complicated etiology, there has been no successful therapy for DPN. Our research recently revealed that jatrorrhizine (JAT), one of the active constituents of Rhizoma Coptidis, remarkably ameliorated DPN. This work highlighted the potential mechanism through which JAT relieves DPN using db/db mice. The results indicated that JAT treatment significantly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity. Histopathological analysis revealed that JAT significantly increased the number of sciatic nerve fibers and axons, myelin thickness, and axonal diameters. Additionally, JAT markedly elevated the expression of myelination-associated proteins (MBP, MPZ, and Pmp22). The screening of histone deacetylases (HDAC) determined that histone deacetylase 3 (HDAC3) is an excellent target for JAT-induced myelination enhancement. Liquid chromatography-mass spectrometry-(MS)/MS and coimmunoprecipitation analyses further confirmed that HDAC3 antagonizes the NRG1-ErbB2-PI3K-AKT signaling axis by interacting with Atxn2l to augment SCs myelination. Thus, JAT ameliorates SCs myelination in DPN mice via inhibiting the recruitment of Atxn2l by HDAC3 to regulate the NRG1-ErbB2-PI3K-AKT pathway.
Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Células de Schwann , Histona Desacetilases/metabolismo , Nervo Isquiático , Diabetes Mellitus/patologia , Neuregulina-1/metabolismoRESUMO
CD74 is a type II cell surface receptor found to be highly expressed in several hematological and solid cancers, due to its ability to activate pathways associated with tumor cell survival and proliferation. Over the past 16 years, CD74 has emerged as a commonly detected fusion partner in multiple oncogenic fusion proteins. Studies have found CD74 fusion proteins in a range of cancers, including lung adenocarcinoma, inflammatory breast cancer, and pediatric acute lymphoblastic leukemia. To date, there are five known CD74 fusion proteins, CD74-ROS1, CD74-NTRK1, CD74-NRG1, CD74-NRG2α, and CD74-PDGFRB, with a total of 16 different variants, each with unique genetic signatures. Importantly, the occurrence of CD74 in the formation of fusion proteins has not been well explored despite the fact that ROS1 and NRG1 families utilize CD74 as the primary partner for the formation of oncogenic fusions. Fusion proteins known to be oncogenic drivers, including those of CD74, are typically detected and targeted after standard chemotherapeutic plans fail and the disease relapses. The analysis reported herein provides insights into the early intervention of CD74 fusions and highlights the need for improved routine assessment methods so that targeted therapies can be applied while they are most effective.