Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150680, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39278094

RESUMO

SCOPE: Triglyceride-based lipid emulsions are critical for total parenteral nutrition (TPN), but their long-term use has adverse effects, such as severe liver dysfunction necessitating improved formulations. This study compares the uptake mechanism and intracellular fate of novel glycerol-stabilized nano-sized lipid emulsions with conventional emulsions in CD4+ T cells, focusing on their impact on cellular metabolism. METHODS AND RESULTS: Nanoemulsions were formulated with increased glycerol content. Uptake of emulsions in primary human CD4+ T cells was investigated using different endocytic blockers, then quantified by flow cytometry, and visualized by confocal microscopy. To investigate emulsion intracellular fate, fatty acids in membrane phospholipids were quantified by GC-MS/MS and cellular metabolism was assessed by Seahorse technology. Results show T cells internalize both conventional and nano-sized emulsions using macropinocytosis. Fatty acids from emulsions are stored as neutral lipids in intracellular vesicles and are incorporated into phospholipids of cellular membranes. However, only nanoemulsions additionally use clathrin-mediated endocytosis and deliver fatty acids to mitochondria for increased ß-oxidation. CONCLUSIONS: Size of lipid emulsion droplets significantly influences their uptake and subsequent metabolism in CD4+ T cells. Our results highlight the potential for improved nutrient utilization with nanoemulsions in TPN formulations possibly leading to less adverse effects.


Assuntos
Linfócitos T CD4-Positivos , Emulsões , Gotículas Lipídicas , Humanos , Linfócitos T CD4-Positivos/metabolismo , Gotículas Lipídicas/metabolismo , Tamanho da Partícula , Endocitose , Células Cultivadas , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo
2.
Small ; : e2402352, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126362

RESUMO

Mechanoluminescence (ML) phosphors have found various promising utilizations such as in non-destructive stress sensing, anti-counterfeiting, and bio stress imaging. However, the reported NIR MLs have predominantly been limited to bulky particle size and weak ML intensity, hindering the further practical applications. For this regard, a nano-sized ZnGa2O4: Cr3+ NIR ML phosphor is synthesized by hydrothermal method. By improving the synthesis method and regulating the chemical composition, the NIR ML (600-1000 nm) intensity of such nano-materials has been further enhanced about four times. The reasons for the ML performance difference between micro-/nano- sized phosphors also have been preliminarily analyzed. Additionally, this work probes into the ML mechanism deeply in traps' aspect from band structure and defect formation energy, which can supply significant references for a new approach to develop efficient NIR ML nanoparticles. Finally, due to excellent tissue penetration capability, nano-sized ZnGa2O4:Cr3+ NIR ML phosphor shows great potential applications in biomedical fields such as for the detection of clinical oral diseases.

3.
Nanotechnology ; 35(46)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39163878

RESUMO

Alloy nanoparticles (NPs) have great potential in nanosized 3D-printing, surface coating, plasmonic enhancement, information coding, and so forth. However, chemical-pollution-free and homogeneous sub-20 nm NPs maintain still a challenge in preparation. Here we present a smart nanosecond laser scan strategy of alloy-NPs preparation on a bilayer metal film by using a nanosized focused beam, successfully realizing controllable fabrication of the sub-20 nm homogeneous alloy NPs without pollution. As a demonstration, various sub-20 nm AgCu NPs with different volume ratios have been prepared, all NPs show narrow size distribution and uniform interparticle spacing. This simple and cost-effective method is stable and adaptable for other alloy-NPs such as AuAg NPs. In addition, such alloy NPs exhibit two-peak plasma resonance feature and information coding capacity. We believe that homogenous alloy sub-20 nm NPs will provide new application opportunities in many fields.

4.
Mikrochim Acta ; 191(8): 485, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060720

RESUMO

Rare earth (RE)-doped CaS phosphors have been widely used as light-emitting components in various fields. Nevertheless, the application of nanosized CaS particles is still significantly limited by their poor water resistance and weak luminescence. Herein, a lattice-matching strategy is developed by growing an inert shell of cubic NaYF4 phase on the CaS luminescent core. Due to their similarity in crystal structure, a uniform core-shell heterostructure (CaS:Ce3+@NaYF4) can be obtained, which effectively protects the CaS:Ce3+ core from degradation in aqueous environment and enhances its luminescence intensity. As a proof of concept, a label-free aptasensor is further constructed by combining core-shell CaS:Ce3+@NaYF4 and Au nanoparticles (AuNPs) for the ultrasensitive detection of kanamycin antibiotics. Based on the efficient FRET process, the detection linear range of kanamycin spans from 100 to 1000 nM with a detection limit of 7.8 nM. Besides, the aptasensor shows excellent selectivity towards kanamycin antibiotics, and has been successfully applied to the detection of kanamycin spiked in tap water and milk samples, demonstrating its high potential for sensing applications.


Assuntos
Antibacterianos , Fluoretos , Ouro , Canamicina , Limite de Detecção , Nanopartículas Metálicas , Leite , Ítrio , Fluoretos/química , Antibacterianos/análise , Antibacterianos/química , Leite/química , Ítrio/química , Ouro/química , Nanopartículas Metálicas/química , Canamicina/análise , Canamicina/química , Aptâmeros de Nucleotídeos/química , Animais , Poluentes Químicos da Água/análise , Luminescência , Água Potável/análise , Técnicas Biossensoriais/métodos , Água/química , Transferência Ressonante de Energia de Fluorescência/métodos
5.
Nano Lett ; 23(24): 11850-11859, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051785

RESUMO

Cardiac oxidative stress is a significant phenotype of myocardial infarction disease, a leading cause of global health threat. There is an urgent need to develop innovative therapies. Nanosized extracellular vesicle (nEV)-based therapy shows promise, yet real-time monitoring of cardiomyocyte responses to nEVs remains a challenge. In this study, a dynamic and label-free cardiomyocyte biosensing system using microelectrode arrays (MEAs) was constructed. Cardiomyocytes were cultured on MEA devices for electrophysiological signal detection and treated with nEVs from E. coli, gardenia, HEK293 cells, and mesenchymal stem cells (MSC), respectively. E. coli-nEVs and gardenia-nEVs induced severe paroxysmal fibrillation, revealing distinct biochemical communication compared to MSC-nEVs. Principal component analysis identified variations and correlations between nEV types. MSC-nEVs enhanced recovery without inducing arrhythmias in a H2O2-induced oxidative stress injury model. This study establishes a fundamental platform for assessing biochemical communication between nEVs and cardiomyocytes, offering new avenues for understanding nEVs' functions in the cardiovascular system.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Humanos , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Escherichia coli , Arritmias Cardíacas , Estresse Oxidativo
6.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337557

RESUMO

Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.


Assuntos
Proliferação de Células , Ácido Hialurônico , Hidrogéis , Melanoma , Proteínas Proto-Oncogênicas B-raf , Espécies Reativas de Oxigênio , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mutação , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
7.
Water Sci Technol ; 90(3): 1070-1081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141052

RESUMO

The utilization of Bacillus sp. for the production of bio-CaCO3 in concrete crack repair and strength enhancement has attracted considerable attention. However, microbial-induced calcium carbonate precipitation (MICP) has yet to be explored as a precedent with activated sludge. Here calcium sourced from concrete slurry waste (CSW) and carbon from sludge microbial ß-oxidation under alkaline were used to generate micro/nano CaCO3. The results indicate that the main crystalline form of the generated precipitated particles is calcite, with a particle size ranging from 0.7 to 10 µm. Minimal heavy metals were found in the supernatant following settling. And at the optimum pH of 8.5-9, carbon capture reached 743 mg L-1, and CaCO3 production reached 1,191 mg L-1, and dominant phylum were Proteobacteria and Bacteroidota, with Thauera being a prevalent genus adept in ß-oxidation. Mass balance analysis showed that alkali promotes microbial ß-oxidation of organisms to produce CO2 and facilitate storage. Thus, the alkaline regulation of metabolism between microbe and CSW provides a novel way of sludge to initiate MICP.


Assuntos
Carbonato de Cálcio , Materiais de Construção , Esgotos , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Álcalis/química
8.
Small ; 19(16): e2206873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609921

RESUMO

Preparation of holey, single-crystal, 2D nanomaterials containing in-plane nanosized pores is very appealing for the environment and energy-related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single-crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As-synthesized 2D Co/NiO-2 nanomesh delivers superior photocatalytic CO2 -syngas conversion efficiency (i.e., VCO of 32460 µmol h-1 g-1 CO and V H 2 ${V_{{{\rm{H}}_2}}}$ of 17840 µmol h-1 g-1 H2 ), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO-1 nanomesh containing larger pore size, respectively. As revealed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the high performance of Co/NiO-2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single-crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well-defined geometric and electronic properties.

9.
Environ Res ; 223: 115485, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775087

RESUMO

Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.


Assuntos
Hordeum , Nanopartículas , Cromo/química , Nanopartículas/toxicidade , Nanopartículas/química , Plantas , Raízes de Plantas/metabolismo
10.
J Microencapsul ; 40(7): 517-533, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526405

RESUMO

The aims of this study were to systematically optimise a formula for eugenol emulsions via face-centered central composite design and to assess the activity against two-different bacterial strains (Staphylococcus aureus and Propionibacterium acnes) present at planktonic and biofilm forms. The molecular interaction of excipients, mean particle size (MPS) including zeta potential (ZP), drug entrapment efficiency (DEE) and in vitro drug release of optimised emulsions was done using FT-IR, Malvern Zetasizer, ultracentrifugation technique and membrane-free dissolution model, respectively. The emulsions consisted of 151.3 ± 1.45 nm MPS, -21.3 ± 1.25 mV ZP and 93.98 ± 1.41% DEE values. On storage of emulsions at 25 °C for 3 months, the value of DEE was found to be 72.12 ± 2.82%. The Tween 80 emulsifier film coverage onto the dispersed eugenol droplets of emulsions delayed significantly the drug release (12%-19%) compared to the drug release occurred from pure eugenol. The treatment of planktonic S. aureus and P. acnes with diluted eugenol emulsions showed the minimum inhibitory concentration and minimum bactericidal concentration values at 1.25-2.5 mg/ml whereas it occurred at 10 mg/ml for pure eugenol. Treating the biofilms with eugenol emulsions (1-2 mg/ml) yielded 59-70% minimum biofilm eradication concentration but 10 mg/ml pure eugenol showed 60%. Hence, the eugenol emulsions displayed antibacterial activity and could be projected as an antibiofilm or biofilm disruption agent.

11.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108814

RESUMO

Natural bioactive compounds have recently emerged as a current strategy for Alzheimer's disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer's disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer's disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer's disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer's disease to a certain extent.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Carotenoides/uso terapêutico , Licopeno , Luteína
12.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835149

RESUMO

Human stefin B, a member of the cystatin family of cysteine protease inhibitors, tends to form amyloid fibrils under relatively mild conditions, which is why it is used as a model protein to study amyloid fibrillation. Here, we show for the first time that bundles of amyloid fibrils, i.e., helically twisted ribbons, formed by human stefin B exhibit birefringence. This physical property is commonly observed in amyloid fibrils when stained with Congo red. However, we show that the fibrils arrange in regular anisotropic arrays and no staining is required. They share this property with anisotropic protein crystals, structured protein arrays such as tubulin and myosin, and other anisotropic elongated materials, such as textile fibres and liquid crystals. In certain macroscopic arrangements of amyloid fibrils, not only birefringence is observed, but also enhanced emission of intrinsic fluorescence, implying a possibility to detect amyloid fibrils with no labels by using optical microscopy. In our case, no enhancement of intrinsic tyrosine fluorescence was observed at 303 nm; instead, an additional fluorescence emission peak appeared at 425 to 430 nm. We believe that both phenomena, birefringence and fluorescence emission in the deep blue, should be further explored with this and other amyloidogenic proteins. This may allow the development of label-free detection methods for amyloid fibrils of different origins.


Assuntos
Amiloide , Cistatinas , Humanos , Cistatina B , Amiloide/metabolismo , Cistatinas/metabolismo , Vermelho Congo , Inibidores de Cisteína Proteinase
13.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836737

RESUMO

The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One potential source of biopolymers is waste from the food industry, the use of which also provides a sustainable and eco-friendly solution to waste management. Thus, the aim of this work concerns the extraction of polysaccharide fractions from lemon, tomato and fennel waste. Characterizing the chemical-physical and thermodynamic properties of these polysaccharides is an essential step in evaluating their potential applications. Hence, the solubility of the extracted polysaccharides in different solvents, including water and organic solvents, was determined since it is an important parameter that determines their properties and applications. Also, acid-base titration was carried out, along with thermoanalytical tests through differential scanning calorimetry. Finally, the electrospinning of waste polysaccharides was investigated to explore the feasibility of obtaining polysaccharide-based membranes. Indeed, electrospun fibers are a promising structure/system via which it is possible to apply waste polysaccharides in packaging or well-being applications. Thanks to processing feasibility, it is possible to electrospin waste polysaccharides by combining them with different materials to obtain porous 3D membranes made of nanosized fibers.


Assuntos
Plásticos , Polissacarídeos , Biopolímeros/química , Plásticos/química , Solventes , Manipulação de Alimentos
14.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202662

RESUMO

Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation-deaggregation, and in a protein colloid, monomerization-dimerization-aggregation are the main processes when pH is changed. A specific point at pH 7.5, where a transition of the colloidal system from one state to another is observed, has been found using all the optical methods mentioned. It has been shown that gold nanoparticles can stabilize HEWL protein molecules at alkaline pH while maintaining enzymatic activity, which can be used in practice. The data obtained in this manuscript allow for the state of HEWL colloids and gold nanoparticles to be monitored using one or two simple and accessible optical methods.


Assuntos
Nanopartículas Metálicas , Muramidase , Ouro , Coloides , Concentração de Íons de Hidrogênio
15.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005356

RESUMO

The adsorption of organic molecules on graphene surfaces is a crucial process in many different research areas. Nano-sized carbon allotropes, such as graphene and carbon nanotubes, have shown promise as fillers due to their exceptional properties, including their large surface area, thermal and electrical conductivity, and potential for weight reduction. Surface modification methods, such as the "pyrrole methodology", have been explored to tailor the properties of carbon allotropes. In this theoretical work, an ab initio study based on Density Functional Theory is performed to investigate the adsorption process of small volatile organic molecules (such as pyrrole derivatives) on graphene surface. The effects of substituents, and different molecular species are examined to determine the influence of the aromatic ring or the substituent of pyrrole's aromatic ring on the adsorption energy. The number of atoms and presence of π electrons significantly influence the corresponding adsorption energy. Interestingly, pyrroles and cyclopentadienes are 10 kJ mol-1 more stable than the corresponding unsaturated ones. Pyrrole oxidized derivatives display more favorable supramolecular interactions with graphene surface. Intermolecular interactions affect the first step of the adsorption process and are important to better understand possible surface modifications for carbon allotropes and to design novel nanofillers in polymer composites.

16.
Small ; 18(4): e2104264, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083857

RESUMO

With the advantages of high theoretical-specific capacity and lowest working potential, lithium metal anode is considered as the most promising anode for next-generation batteries. Here, a scalable dealloying method is developed to prepare nano-sized bismuth (Bi). It is found that the Bi-modification can not only enhance the wettability of the commercial polyethylene separator but also suppresses the lithium dendrite growth. With the nano-sized Bi modified separator, 5V-class lithium metal batteries with commercial carbonate-based electrolyte show a 91% capacity retention ratio after 800 cycles. First-principle calculations prove that lithium atoms tend to deposit smoothly on the Bi surface. Moreover, for potassium ion batteries, nano-sized Bi shows a stable cycling performance and high capacity. The results may be useful for the development of high-energy and high-safety batteries.

17.
Chemistry ; 28(11): e202102787, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34961998

RESUMO

Silicoaluminophosphate zeolite (SAPO-34) has been attracting increasing attention due to its excellent form selection and controllability in the chemical industry, as well as being one of the best industrial catalysts for methanol-to-olefin (MTO) reaction conversion. However, as a microporous molecular sieve, SAPO-34 easily generates carbon deposition and rapidly becomes inactivated. Therefore, it is necessary to reduce the crystal size of the zeolite or to introduce secondary macropores into the zeolite crystal to form a hierarchical structure in order to improve the catalytic effect. In this review, the synthesis methods of conventional SAPO-34 molecular sieves, hierarchical SAPO-34 molecular sieves and nanosized SAPO-34 molecular sieves are introduced, and the properties of the synthesized SAPO-34 molecular sieves are described, including the phase, morphology, pore structure, acid source, and catalytic performance, in particular with respect to the synthesis of hierarchical SAPO-34 molecular sieves. We hope that the review can provide guidance to the preparation of the SAPO-34 catalysts, and stimulate the future development of high-performance hierarchical SAPO-34 catalysts to meet the growing demands of the material and chemical industries.

18.
Acta Pharmacol Sin ; 43(11): 2749-2758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35484402

RESUMO

Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Nanomedicina , Imunoterapia , Neoplasias/terapia
19.
Acta Pharmacol Sin ; 43(12): 3045-3054, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050519

RESUMO

Immunotherapy that activates immune systems for combating cancer has yielded considerable clinical benefits recently. However, the immunosuppressive tumor microenvironment (ITME) is a major hurdle to immunotherapy as it supports tumor to evade immune surveillance. Reversing ITME facilitates the recruitment and activation of antitumor immune cells, thereby promoting immunotherapy. Our group has developed various nanosized drug delivery systems (NDDSs) to modulate ITME with enhanced efficacy and safety. In the review we introduce the ITME-remodeling strategies for improving immunotherapy based on NDDSs including triggering tumor cells to undergo immunogenetic cell death (ICD), applying tumor vaccine, and directly regulating intratumoral immune components (immune cells or cytokines). In order to guide the design of NDDSs for amplified effects of antitumor immunotherapy, the contributions and future directions of this field are also discussed.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Imunoterapia , Sistemas de Liberação de Medicamentos , Microambiente Tumoral , Neoplasias/terapia , Vacinas Anticâncer/uso terapêutico , Fatores Imunológicos/farmacologia
20.
Ecotoxicol Environ Saf ; 241: 113794, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738107

RESUMO

The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.


Assuntos
Grafite , Microalgas , Grafite/química , Grafite/toxicidade , Substâncias Húmicas , Paládio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA