Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905014

RESUMO

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Assuntos
Espectrometria de Massas , Esgotos , Esgotos/química , Compostos Orgânicos/química , Fracionamento Químico , Modelos Teóricos , Águas Residuárias/química
2.
Environ Res ; 219: 115131, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565845

RESUMO

Proteins existed in aquatic environments strongly influence the transport, fate of nanomaterials due to the formation of protein-corona surrounding nanomaterials. To date, how do proteins affect the aggregation behaviors of MXene, a new family of two-dimensional materials, in aquatic environment remains unknown. Here the aggregation kinetics of MXene Ti3C2Tx nanosheets in various electrolytes (NaCl, CaCl2 and Na2SO4) was investigated by time-resolved dynamic light scattering in absence or presence of bovine serum albumin (BSA). Results showed that BSA affected the aggregation of Ti3C2Tx in a concentration-dependent manner. Addition of 3 mg/L BSA decreased the critical coagulation concentrations (CCCs) of Ti3C2Tx about 1.6-2.1 times, showing obvious destabilization effect; while BSA greater than 30 mg/L created a high-protein environment covering Ti3C2Tx, producing high spatial repulsion and enhancing the dispersibility of Ti3C2Tx. Ca2+ ions have greater effect on the aggregation of Ti3C2Tx due to the larger surface charge and bridging effect. The interaction between Ti3C2Tx and BSA followed Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and mainly attributed to hydrogen bonding and van der Waals forces, while positively charged lysine and arginine in BSA might attract onto Ti3C2Tx through electrostatic attraction. The interaction decreased the content of α-helix structure in BSA from 74.7% to 53.1%. Ti3C2Tx easily suffered from aggregation and their long-distance transport seemed impossible in synthetic or natural waters. The present findings provided new insights for understanding the transfer and fate of this nanomaterial in aquatic environments.


Assuntos
Nanoestruturas , Coroa de Proteína , Cinética , Titânio
3.
Ecotoxicol Environ Saf ; 262: 115164, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37356401

RESUMO

Widespread applications and release of photoactive nanoparticles (NPs) such as titanium dioxide (TiO2) into environmental matrices warrant mechanistic investigations addressing toxicity of NPs under environmentally relevant conditions. Accordingly, we investigated the effects of surface adsorbed natural organic matters (NOMs) such as humic acid, tannic acid and lignin on the band gap energy, abiotic reactive oxygen species (ROS) generation, surface chemistry and phototoxicity of TiO2 NPs. Initially, a liquid assisted grinding method was optimized to produce TiO2 NPs with a NOM layer of defined thickness for further analysis. Generally, adsorption of NOM reduced the band-gap energy of TiO2 NPs from 3.08 eV to 0.56 eV with humic acid, 1.92 eV with tannic acid and 2.48 eV with lignin. Light activated ROS generation by TiO2 NPs such as hydroxyl radicals, however, was reduced by 4, 2, 9 times in those coated with humic acid, tannic acid and lignin, respectively. This reduction in ROS despite decrease in band gap energy corroborated with the decreased surface oxygen vacancy (as revealed by X-ray Photoelectron Spectroscopy (XPS)) and quenching of ROS by surface adsorbed NOM. Despite the reduced ROS generation, the NOM-modified TiO2 NPs exhibited an increased phototoxicity to Chlorella vulgaris in comparison to pristine TiO2 NPs. Further analysis suggested that photoactivation of NOM modified TiO2 NPs releases toxic degradation products. Findings from our studies thus provide mechanistic insight into the ecotoxic potential of NOM-modified TiO2 NPs when exposed to light in the environment.

4.
J Environ Sci (China) ; 99: 110-118, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183688

RESUMO

Over the recent past, fluoroquinolone antibiotics (FQs) have raised extensive attention due to their potential to induce the formation of resistance genes and "superbugs", thus various advanced oxidation techniques have been developed to eliminate their release into the environment. In the present study, the prototype tetraamido macrocyclic ligand (FeIII-TAML)/hydrogen peroxide (H2O2) system is employed to degrade FQs (i.e., norfloxacin and ciprofloxacin) over a wide pH range (i.e., pH 6-10), and the reaction rate increases with the increase in pH level. The effect of dosage of FeIII-TAML and H2O2 on the degradation of FQs is evaluated, and the reaction rate is linearly correlated with the added amount of chemicals. Moreover, the impact of natural organic matters (NOM) on the removal of FQs is investigated, and the degradation kinetics show that both NOM type and experimental concentration exhibit negligible influence on the oxidative degradation of selected antibiotics. Based on the results of liquid chromatography-high resolution mass spectrometry and theoretical calculations, the reaction sites and pathways of FQs by FeIII-TAML/H2O2 system are further predicted and elucidated.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Antibacterianos , Compostos Férricos , Fluoroquinolonas , Oxirredução
5.
Ecotoxicology ; 24(10): 2207-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403610

RESUMO

The surface interaction between heavy metals and natural organic matters (NOM) substantially affects their migration and conversion in natural environments. In this study, the chemical speciation and element mapping of Fe and Mn in reduced NOM were investigated. The results show that quinone and semiquinone moieties dominated the redox properties in NOM, and the EPR signal intensity exhibited pH dependence with an increase of EPR signal intensity at a higher pH value. The EPR results indicate that the complexes displayed the characteristics of superparamagnetic oxides/oxyhydroxides after Fe/Mn complexed with NOM. µ-XRF results suggest that the scatterplots of Fe and Mn distributions at pH 11 had the most positive linearly-related plot points, indicating strong correlations for Mn-Fe binary metallic ions. µ-XANES results further interpret the presence of higher Mn oxidation state at pH 11, while Fe kept trivalent in all samples. These results reveal that the surface interactions are closely related to the redox state of NOM and are beneficial for better understanding the speciation, immobilization, transport, and toxicity of metal ions in natural waters.


Assuntos
Substâncias Húmicas/análise , Ferro/análise , Manganês/análise , Poluentes Químicos da Água/análise , Espectroscopia de Ressonância de Spin Eletrônica , Monitoramento Ambiental , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
6.
Chemosphere ; 355: 141710, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493998

RESUMO

Natural organic matter is a mixture of microbial decomposition products widely found in surface and groundwater. These organic materials have great potential as carbon-based precursors for chemical synthesis. This work demonstrated the development of a green photocatalyst via a facile adsorption process that combined colloidal titanium dioxide (TiO2) with humic acid. The resulting photocatalyst was visible light active and able to completely degrade 5 mg/L of BPA within 6 h under the irradiation of energy-efficient LED white light. The first-order kinetic rate constant of the reaction was determined to be 1.7 × 10-2 min-1. The enhanced photocatalytic activity was attributed to the decreased band gap energy and effective charge separation that limits the photogenerated electron-hole recombination. The outcome of this research opened an opportunity for the development of sustainable functional materials using natural organic matter.


Assuntos
Compostos Benzidrílicos , Substâncias Húmicas , Luz , Fenóis/química , Titânio/química , Catálise
7.
Sci Total Environ ; 914: 169666, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184255

RESUMO

Biofilm is one of the important factors affecting nitrogen removal in constructed wetlands (CWs). However, the impact of submerged macrophyte on nitrogen conversion of biofilms on leaf of submerged macrophyte and matrix remains poorly understood. In this study, the CWs with Vallisneria natans and with artificial plant were established to investigate the effects of submerged macrophyte on nitrogen conversion and the composition of nitrogen-converting bacteria in leaf and matrix biofilms under high ammonium nitrogen (NH4+-N) loading. The 16S rRNA sequencing method was employed to explore the changes in bacterial communities in biofilms in CWs. The results showed that average removal rates of total nitrogen and NH4+-N in CW with V. natans reached 71.38% and 82.08%, respectively, representing increases of 24.19% and 28.79% compared with the control with artificial plant. Scanning electron microscope images indicated that high NH4+-N damaged the leaf cells of V. natans, leading to the cellular content release and subsequent increases of aqueous total organic carbon. However, the specific surface area and carrier function of V. natans were unaffected within 25 days. As a natural source of organic matters, submerged macrophyte provided organic matters for bacterial growth in biofilms. Bacterial composition analysis revealed the predominance of phylum Proteobacteria in CW with V. natans. The numbers of nitrifiers and denitrifiers in leaf biofilms reached 1.66 × 105 cells/g and 1.05 × 107 cells/g, as well as 2.79 × 105 cells/g and 7.41 × 107 cells/g in matrix biofilms, respectively. Submerged macrophyte significantly increased the population of nitrogen-converting bacteria and enhanced the expressions of nitrification genes (amoA and hao) and denitrification genes (napA, nirS and nosZ) in both leaf and matrix biofilms. Therefore, our study emphasized the influence of submerged macrophyte on biofilm functions and provided a scientific basis for nitrogen removal of biofilms in CWs.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/análise , Áreas Alagadas , RNA Ribossômico 16S , Bactérias , Biofilmes
8.
Sci Total Environ ; 897: 165275, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406707

RESUMO

Both surfactants and natural organic matters (NOMs) are substances commonly found in aqueous environments, and their effects on the transport of nanoplastics that is gradually gaining widespread attention in porous media are currently in their infancy, while their combined effects are absent. We investigated innovatively the combined effect of surfactants and NOMs on the transport of polystyrene nanoplastics (PS-NPs) in saturated porous media. Adsorption tests of surfactants and NOMs onto PS-NPs, adsorption tests of PS-NPs onto quartz sand, and transport tests of PS-NPs in saturated quartz sand were conducted. Hydrophobicity and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. A mathematical model was employed to fit the transport of PS-NPs in porous media. It was found that the effects and action mechanisms of cationic cetyl trimethylammonium bromide (CTAB) and anionic sodium dodecylbenzene sulfonate (SDBS) on the transport of PS-NPs in porous media were distinct. In the presence of CTAB, 1 mg/L humic acid (HA) and 10 mg/L sodium alginate (SA) could promote aggregation of PS-NPs by decreasing the absolute zeta potential of PS-NPs, and reducing the energy barrier between PS-NPs and porous media and increasing the blocking and straining, thus inhibiting the transport of PS-NPs. In the presence of SDBS, SA and HA could improve the adsorption of SDBS onto PS-NPs by bridging and increasing adsorption sites, thus increasing the hydrophilicity of PS-NPs and improving the transport of PS-NPs. Whether or not NOMs were present, the transport of PS-NPs in porous media was mainly governed by the DLVO interaction energy in the presence of cationic surfactants and by hydrophobicity in the presence of anionic surfactants. This innovative observation has led to an understanding on the environmental behaviour of nanoplastics in porous media under complex environments.

9.
Environ Pollut ; 316(Pt 2): 120646, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375576

RESUMO

Natural organic matters (NOMs), omnipresent in natural water, challenge the toxicity assessment of pollutants to aquatic organisms due to their complex interactions with chemicals and organisms. Here, we investigated the combined toxicity of one solid NOM (black carbon, BC) or one soluble NOM (humic acid, HA) with antibiotics, roxithromycin (RTM) or gatifloxacin (GAT), to the cyanobacterium Synechocystis sp.. The NOMs alleviated the toxicity of RTM and GAT to Synechocystis sp., and BC had greater alleviation effects than HA due to its stronger adsorption to antibiotics. Antibiotics disturbed the photosynthesis of Synechocystis sp. significantly, which were also mitigated by BC and HA. Proteomic analysis showed that BC up-regulated the pathway of ribosome and photosynthetic antenna protein. GAT down-regulated the pathways of ABC transporter and oxidative phosphorylation. RTM interfered the pathway of porphyrin and chlorophyll metabolism. Furthermore, the addition of BC reduced the number of differentially expressed proteins caused by antibiotics, corroborating its mitigation effects on the toxicity of antibiotics. The disturbance of HA on the pathway of ABC transporters inhibited the internalization of RTM, thus decreasing its toxicity. This study underscores the significance of NOMs in mediating the toxicity of organic pollutants to aquatic organisms in natural waters.


Assuntos
Poluentes Ambientais , Synechocystis , Substâncias Húmicas/análise , Proteômica , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Fotossíntese , Organismos Aquáticos , Fuligem , Poluentes Ambientais/metabolismo , Carbono/metabolismo
10.
Sci Total Environ ; 893: 164504, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257602

RESUMO

Natural organic matters (NOMs) are widely present in aqueous environments. The effect of NOMs on the fate of nanoplastics that are gradually receiving widespread attention in porous media needs to be noticed, but relevant research is lacking. To fill this gap, the present study focused on elucidating the influence of NOMs and metal cations with varying concentrations upon the transport, long-term release, and particle fracture of polystyrene nanoplastics (PS-NPs) in saturated porous media. The adsorption, transport, long-term release, and particle fracture tests were conducted. A mathematical model and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used in this research. NOMs could adsorb onto PS-NPs leading to a reduction in the PS-NPs' zeta potential and an increase in the energy barrier and steric hindrance between PS-NPs and quartz sand, ultimately facilitating the transport of PS-NPs through porous media. On the other hand, an increase in concentration and valence of metal ions enhanced the PS-NPs' zeta potential, resulting in PS-NPs' aggregation and increased size when NOMs were present. This reduced the energy barrier between porous media and PS-NPs, resulting in increased blocking and straining, allowing decreased PS-NPs' transport. Long-term release tests demonstrated release ability and mobilities of PS-NPs decreased as the enhanced NOM concentration, addition of metal cations, and decreased valence of metal ions, in agreement with the transport test findings. In the research about particle fracture, NOMs were found to inhibit the fracture of PS-NPs by adsorbing on their surface to protect them from fracture. Metal cations and increased metal cation valence promoted the fracture of released PS-NPs when NOMs were present by promoting NOM aggregation and thus hindering the protection of NOMs for the nanoplastics.

11.
Chemosphere ; 310: 136805, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36223821

RESUMO

Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.


Assuntos
Ecossistema , Nanopartículas , Cinética , Nanopartículas/química , Coloides/química
12.
Chemosphere ; 288(Pt 3): 132634, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699882

RESUMO

Arsenic is a highly toxic pollutant and exists in inorganic and organic forms in groundwater and industrial wastewater. It is of great importance to reduce the arsenic content to lower levels in the water (e.g., <10 ppb for drinking) in order to minimize risk to humans. In this study, a Fe-Mn-Zr ternary magnetic sorbent was fabricated via precipitation for removal of inorganic and organic arsenate. The synthesis of sorbent was optimized by Taguchi method, which leads to an adsorbent with higher adsorption capacity. The adsorption of As(V) was pH dependent; the optimal removal was achieved at pH 2 and 5 for inorganic and organic As(V), respectively. Contact time of 25 h was sufficient for complete adsorption of both inorganic and organic As(V). The adsorption isotherm study revealed that the adsorbent performed better in sequestration of inorganic As(V) than that of organic As(V); both adsorption followed the Langmuir isotherm with maximum adsorption capacities of 81.3 and 16.98 mg g-1 for inorganic and organic As(V), respectively. The existence of anions in the water had more profound effect on the adsorption of organic As(V) than the inorganic As(V). The co-existing silicate and phosphate ions caused significantly negative impacts on the adsorption of both As(V). Furthermore, the existence of humic acid caused the deterioration of inorganic As(V) removal but showed insignificant impact on the organic As(V) adsorption. The mechanism study demonstrated that ion exchange and complexation played key roles in arsenic removal. This study provides a promising magnetic adsorptive material for simultaneous removal of inorganic and organic As(V).


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Água , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 802: 149812, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455275

RESUMO

While ubiquitous natural organic matters (NOMs) are capable of enhancing zero-valent iron (ZVI) performance under aerobic conditions, there is limited understanding of how the properties of NOMs affect the reactivity of ZVI towards contaminants removal. Here, the corresponding activity of ZVI under aerobic conditions was investigated in the presence of humic acid (HA), fulvic acid (FA), bovine serum albumin (BSA). It was found that three models of NOMs were all effective in promoting diatrizoate (DTA) reduction via depassivating ZVI. Interestingly, fast adsorption of NOM onto ZVI surface initially caused inconspicuous impact or visible inhibition on hydrophilic DTA reduction depending on their hydrophobicity. However, subsequent exposure of more reactive sites with high hydrophilicity arising from the detachment of surfaced NOM-associated iron oxide finally contributed to the enhanced consumption of Fe0 with the ability: HA > FA ≈ BSA, and 1-2 times increase in DTA removal kinetic rate following the order: HA > FA > BSA. It further revealed that there were two key factors in determining DTA removal under aerobic conditions, including the ability of NOMs to boost Fe0 consumption as contributed by their aromaticity degree and amino groups, and the hydrophobicity of NOMs to initially affect the property of ZVI surfaces.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Substâncias Húmicas/análise , Ferro , Poluentes Químicos da Água/análise
14.
Environ Int ; 170: 107653, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36436463

RESUMO

Dissemination of antibiotic resistance gene (ARG) is a huge challenge around the world. Natural organic matter (NOM) is one of the most commonly components in aquatic systems. Information regarding ARG transfer induced by NOM is still lacking. In this study, experimental exploration and model prediction on RP4 plasmid conjugative transfer between bacteria under NOM exposure was conducted. Compared with no exposure, the conjugative transfer frequency of RP4 plasmid increased 7.1-fold and 3.2-fold under exposure to 10 kDa and 100 kDa NOM exposure, respectively. NOM exposure with a lower molecular weight and higher concentration promoted gene expressions related to reactive oxygen species generation, cell membrane permeability, intercellular contact, quorum sensing, and energy driving force. Concurrently, the expressions of conjugation genes in RP4 plasmid were also upregulated. Moreover, model prediction demonstrated that the maintenance of the acquired plasmid was shortened to 133 h under 10 kDa NOM exposure compared with the control (200 h). Long-term NOM exposure enhanced transfer frequency and transfer rate of ARG. This study firstly theoretically and experimentally revealed the underlying mechanisms for promoting ARG transfer by NOM.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética
15.
NanoImpact ; 23: 100347, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559848

RESUMO

Sludge is an integral part in the migration pathway of silver nanoparticles (AgNPs) from manufacture to the terrestrial environment. However, the detailed information on the role of natural organic matters (NOMs) remains limited. In this study, the sludge generated from coagulation of wastewater spiked with AgNPs (denoted as sludgeC-AgNPs) was taken as the model. Effects of humic acid (HA), alginate (AA) and bovine serum albumin (BSA) on the release amount, dynamics and speciation of silver from the sludgeC-AgNPs were investigated by a series of leaching experiments. The results showed that HA, AA and BSA in the leaching solution could enhance the silver release from the sludgeC-AgNPs. The concentrations of the dissolved and colloidal silver in the BSA solution were the highest at the initial stage of dynamic leaching. The controlling step of the silver release was internal diffusion in the HA and AA solution, while the release of dissolved silver was controlled by both chemical reaction and internal diffusion in the BSA solution. In addition, the released colloidal silver fractions in the BSA solution contained more particles with size >50 nm compared with the HA and AA solutions. The results suggested that the properties of NOMs may be the key factor affecting the transfer of AgNPs from the sludge to the terrestrial environment.


Assuntos
Nanopartículas Metálicas , Prata , Substâncias Húmicas , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Esgotos , Prata/análise , Águas Residuárias/química
16.
Membranes (Basel) ; 11(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34940470

RESUMO

The fouling mechanism of the anion exchange membrane (AEM) induced by natural organic matter (NOM) in the absence and presence of calcium ions was systematically investigated via the extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) approach. Sodium alginate (SA), humic acid (HA), and bovine serum albumin (BSA) were utilized as model NOM fractions. The results indicated that the presence of calcium ions tremendously aggravated the NOM fouling on the anion exchange membrane because of Ca-NOM complex formation. Furthermore, analysis of the interaction energy between the membrane surface and foulants via xDLVO revealed that short-range acid-base (AB) interaction energy played a significant role in the compositions of interaction energy during the electrodialysis (ED) process. The influence of NOM fractions in the presence of calcium ions on membrane fouling followed the order: SA > BSA > HA. This study demonstrated that the interaction energy was a dominating indicator for evaluating the tendency of anion exchange membranes fouling by natural organic matter.

17.
Water Res ; 204: 117583, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478995

RESUMO

UV-based water treatment processes have been reported to induce genotoxicity during the treatments of surface water, drinking water and artificial water with natural organic matters (NOMs), causing genotoxicity concerns for the drinking water safety. Nitrogenous disinfection byproducts (N-DBPs) were generally reported to be much more genotoxic than their non-nitrogenous analogues, and might be responsible for the genotoxicity in UV processes. Although nitrate-rich water was getting attention for the possibility of genotoxicity and N-DBPs during UV treatments, the impact mechanism of nitrate on the degradation of NOMs, the formation of N-DBPs and genotoxicity has not been explicated. Here simulation experiments of NOM degradation under medium-pressure (MP) UV and MP UV/H2O2 treatments were conducted to explore the effect of nitrate on the molecular characteristics of NOM, the nitrate-derived N-DBPs and the potential genotoxicity through non-targeted analysis and CALUX® reporter gene assays. The results showed that nitrate can accelerate the degradation of NOMs in the MP UV process but inhibit the degradation of NOMs in the MP UV/H2O2 process. During the degradation of NOMs, the molecular compositions varied by the effect of nitrate on oxygen atoms, molecule analogs, and saturation. A total of 105 and 374 nitrate-derived N-DBPs were identified in the MP UV and MP UV/H2O2 treatment, respectively. Most of these N-DBPs contain one nitrogen atom, and the representative features are nitro-, methoxy- (or hydroxyl-) and ester- groups on benzene. No genotoxicity was observed without nitrate spiking, whereas genotoxicity was induced after both MP UV and MP UV/H2O2 treatments when nitrate was spiked, which is worthy of attention for the drinking water safety management.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Meios de Cultura , Desinfecção , Halogenação , Peróxido de Hidrogênio , Nitratos
18.
Chemosphere ; 238: 124659, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524612

RESUMO

A hybrid system was developed in this study consisting of different coagulation systems and ultrafiltration (UF). Property and effect of flocs formed in different coagulation systems on ultrafiltration membrane fouling control were investigated. All three coagulation systems, as pretreatment of UF, were effective in improving membrane flux and reducing membrane resistance within an appropriate range of natural organic matters (NOM) concentration. At high initial NOM concentration, the performance of polyaluminum chloride (PAC) on NOM removal and fouling control was severely limited. For PAC-poly dimethyl diallyl ammonium chloride (PAC-PolyDMDAAC) coagulation system, the limitation of initial NOM concentration on removing NOM and alleviating membrane fouling was slightly weakened, indicating composite flocculant PAC-PolyDMDAAC produced larger flocs through combined action of charge neutralization and adsorption bridging. In PAC + PolyDMDAAC dual coagulation system, the combined action of adsorption-bridging effect, sweeping effect, and charge neutralization were the mechanisms under both low and high initial NOM concentration. Although the flocs formed in PAC + PolyDMDAAC dual coagulation system had poor recovery ability compared with those formed in PAC and PAC-PolyDMDAAC coagulation system, flocs formed through adsorption-bridging and sweeping had large size and higher ability to resist shear force, resulting in the formation of cake layer with porous and fluffy structure and less blockage in membrane pore in PAC + PolyDMDAAC dual coagulation system. These results demonstrated that dual coagulation system combined PAC coagulation and PolyDMDAAC flocculation as a pretreatment of UF process can improve the characteristics of flocs and structure of cake layer for improving NOM removal and controlling membrane fouling.


Assuntos
Hidróxido de Alumínio , Membranas Artificiais , Ultrafiltração/métodos , Adsorção , Floculação , Ultrafiltração/instrumentação , Purificação da Água/métodos
19.
Environ Pollut ; 255(Pt 2): 113302, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31597113

RESUMO

The intentional production and degradation of plastic debris may result in the formation of nanoplastics. Currently, the scarce information on the environmental behaviors of nanoplastics hinders accurate assessment of their potential risks. Herein, the aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes was investigated to shed some light on the fate of nanoplastics in the aquatic environment. Three monodisperse nanoparticles including unmodified nanoparticles (PS-Bare), carboxylated nanoparticles (PS-COOH) and amino modified nanoparticles (PS-NH2), as well as one polydisperse nanoparticles that formed by laser ablation of polystyrene films (PS-Laser) were used as models to understand the effects of surface groups and morphology. Results showed that aggregation kinetics of negatively charged PS-Bare and PS-COOH obeyed the DLVO theory in NaCl and CaCl2 solutions. The presence of Suwannee river natural organic matters (SRNOM) suppressed the aggregation of PS-Bare and PS-COOH in monovalent electrolytes by steric hindrance. However, in divalent electrolytes, their stability was enhanced at low concentrations of SRNOM (below 5 mg C L-1), while became worse at high concentrations of SRNOM (above 5 mg C L-1) due to the interparticle bridging effect caused by Ca2+ and carboxyl groups of SRNOM. The cation bridging effect was also observed for PS-laser in the presence of high concentrations of divalent electrolytes and SRNOM. The adsorption of SRNOM could neutralize or even reverse surface charges of positively charged PS-NH2 at high concentrations, thus enhanced or inhibited the aggregation of PS-NH2. No synergistic effect of Ca2+ and SRNOM was observed on the aggregation of PS-NH2, probably due to the steric repulsion imparted by the surface modification. Our results highlight that surface charge and surface modification significantly influence aggregation behaviors of nanoplastics in aquatic systems.


Assuntos
Eletrólitos/química , Nanopartículas/química , Poliestirenos/química , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Plásticos , Rios , Cloreto de Sódio
20.
ACS Appl Mater Interfaces ; 9(46): 40369-40377, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29111662

RESUMO

Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramicGO) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramicGO membrane (14.4-58.6 L/m2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramicGO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na2SO4, CaCl2, and CaSO4). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramicGO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA