Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(28): e2301627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974604

RESUMO

The ambient electrochemical N2 reduction reaction (NRR) is a future approach for the artificial NH3 synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber-Bosch technology. However, the challenge of N2 activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB2 nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH3 with a production rate of 30.5 µg h-1 mgcat -1 and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH3 production is attributed to the large amount of active B vacancies on the surface of NbB2 NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N2 on both unsaturated Nb and B atoms results in a significantly stretched N2 molecule. The weakened NN triple bonds are easier to be broken for a biased NH3 production. The diatomic catalysis is a future approach for NRR as it shows a special N2 adsorption mode that can be well engineered.

2.
Adv Sci (Weinh) ; 9(13): e2103815, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266647

RESUMO

Robust superlubricity (RSL), defined by concurrent superlow friction and wear, holds great promise for reducing material and energy loss in vast industrial and technological operations. Despite recent advances, challenges remain in finding materials that exhibit RSL on macrolength and time scales and possess vigorous electrical conduction ability. Here, the discovery of RSL is reported on hydrated NbB2 films that exhibit vanishingly small coefficient of friction (0.001-0.006) and superlow wear rate (≈10-17 m3 N-1 m-1 ) on large length scales reaching millimeter range and prolonged time scales lasting through extensive loading durations. Moreover, the measured low resistivity (≈10-6 Ω m) of the synthesized NbB2 film indicates ample capability for electrical conduction, extending macroscale RSL to hitherto largely untapped metallic materials. Pertinent microscopic mechanisms are elucidated by deciphering the intricate load-driven chemical reactions that generate and sustain the observed superlubricating state and assessing the strong stress responses under diverse strains that produce the superior durability.


Assuntos
Fricção
3.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556704

RESUMO

To meet aero-engine aluminum skirt requirements, an experiment was carried out using Al-Nb-B2O3-CuO as the reaction system and a 6063 aluminum alloy melt as the reaction medium for a contact reaction, and 6063 aluminum matrix composites containing in situ particles were prepared with the near-liquid-phase line-casting method after the reaction was completed. The effects of the reactant molar ratio and the preheating temperature on the in situ reaction process and products were explored in order to determine the influence of in situ-reaction-product features on the organization and the qualities of the composites. Thermodynamic calculations, DSC analysis, and experiments revealed that the reaction could continue when the molar ratio of the reactants of Al-Nb-B2O3-CuO was 6:1:1:1.5. A kinetic study revealed that the Al thermal reaction in the system produced Al2O3 and [B], and the [B] atoms interacted with Nb to generate NbB2. With increasing temperature, the interaction between the Nb and the AlB2 produced hexagonal NbB2 particles with an average longitudinal size of 1 µm and subspherical Al2O3 particles with an average longitudinal size of 0.2 µm. The microstructure of the composites was reasonably fine, with an estimated equiaxed crystal size of around 22 µm, a tensile strength of 170 MPa, a yield strength of 135 MPa, an elongation of 13.4%, and a fracture energy of 17.05 × 105 KJ/m3, with a content of 2.3 wt% complex-phase particles. When compared to the matrix alloy without addition, the NbB2 and Al2O3 particles produced by the in situ reaction had a significant refinement effect on the microstructure of the alloy, and the plasticity of the composite in the as-cast state was improved while maintaining higher strength and better overall mechanical properties, allowing for industrial mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA