Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230127, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910455

RESUMO

We employ constrained path Auxiliary Field Quantum Monte Carlo (AFQMC) in the pursuit of studying physical nuclear systems using a lattice formalism. Since AFQMC has been widely used in the study of condensed-matter systems such as the Hubbard model, we benchmark our method against published results for both one- and two-dimensional Hubbard model calculations. We then turn our attention to cold atomic and nuclear systems. We use an onsite contact interaction that can be tuned in order to reproduce the known scattering length and effective range of a given interaction. Developing this machinery allows us to extend our calculations to study nuclear systems within a lattice formalism. We perform initial calculations for a range of nuclear systems from two- to few-body neutron systems. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

2.
Cytogenet Genome Res ; 163(3-4): 163-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071978

RESUMO

In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated, and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0-4 Gy at two different facilities in Germany (Physikalisch-Technische Bundesanstalt [PTB]) and the USA (the Columbia IND Neutron Facility [CINF]). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semiautomatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semiautomatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed nonlinear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.


Assuntos
Nêutrons , Humanos , Alemanha
3.
J Radiol Prot ; 43(1)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36599152

RESUMO

Hadron radiation therapy is of great interest worldwide. Heavy-ion beams provide ideal therapeutic conditions for deep-seated local tumours. At the Heidelberg Ion Beam Therapy Center (HIT, Germany), protons and carbon ions are already integrated into the clinical routine, while16O ions are still used for research only. To ensure the protection of the technical staff and members of the public, it is required to estimate the neutron dose distribution for optimal working conditions and at different locations. The Particle and Heavy Ion Transport Code System (PHITS) is used in this work to evaluate the dose rate distribution of secondary neutrons in a treatment room at HIT where16O ions are used: an equivalent target in soft tissue is considered in the shielding assessment to simulate the interaction of the beam with patients. The angular dependence of neutron fluences and energy spectra around the considered phantom were calculated. Alongside the spatial distribution of the neutron and photon fluence, a map of the effective dose rate was estimated using the ICRP fluence-to-effective dose conversion coefficients, exploiting the PHITS code's built-in capabilities. The capability of the actual shielding design of the studied HIT treatment room was approved.


Assuntos
Nêutrons , Humanos , Doses de Radiação , Método de Monte Carlo , Transporte de Íons , Íons
4.
J Radiol Prot ; 43(2)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257434

RESUMO

Iranian Light Source Facility (ILSF) is an under-construction synchrotron radiation accelerator consisting of a 150 MeV linac, a booster synchrotron operating from 150 MeV to 3 GeV, and a 3 GeV storage ring that stores a maximum of 400 mA current of electrons. As the stored beam circulates, a fraction of the beam is lost due to interactions with gas molecules, interactions among beam particles, and orbital bending, which produce radiation. The bulk shielding calculation for the ILSF and the input parameters used for this analysis are discussed in this paper. The potential of skyshine neutrons to cause radiation hazards is investigated as well. Moreover, the design and shielding simulation using the FLUKA Monte Carlo code is presented for the linac beam stop and primary and scattered gas bremsstrahlung for the first optics enclosure of the ILSF spectro microscopy beamline. Our designed radiation shielding system guarantees that the annual dose in all areas around the ILSF machine does not exceed the dose limit of 1 mSv.


Assuntos
Simulação por Computador , Proteção Radiológica , Síncrotrons , Irã (Geográfico) , Método de Monte Carlo , Nêutrons , Doses de Radiação , Síncrotrons/instrumentação , Síncrotrons/normas , Elétrons
5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743215

RESUMO

We study the impact of radiation LET on manifestation of HRS/IRR response in Chinese hamster cells ovary cells exposed to radiations used in radiotherapy. Earlier we have investigated this response to carbon ions (455 MeV/amu) in the pristine Bragg curve plateau and behind the Bragg peak, 60Co γ-rays, and 14.5 MeV neutrons. Now we present results of cytogenetic metaphase analysis in plateau-phase CHO-K1 cells irradiated with scanning beam protons (83 MeV) at doses < 1 Gy and additional data for 14.5 MeV neutrons. Dose curves for frequency of total chromosome aberrations (CA, protons), paired fragments (protons, neutrons), aberrant cells (neutrons) had typical HRS/IRR structure: HRS region (up to 0.1 and 0.15 Gy), IRR region (0.1−0.6 Gy and 0.15−0.35 Gy) for protons and neutrons, respectively, and regular dose dependence. Taken together with previous results, the data show that LET increase shifts the HRS upper border (from 0.08−0.1 Gy for γ-rays, protons and plateau carbons to 0.12−0.15 Gy for "tail" carbons and neutrons). The IRR regions shortens (0.52−0.4 γ-rays and protons, 0.25 plateau carbons, 0.2 Gy "tail" carbons and neutrons). CA level of IRR increases by 1.5−2.5 times for carbons as compared to γ-rays and protons. Outside HRS/IRR the yield of CA also enhanced with LET increase. The results obtained for different LET radiations suggest that CHO-K1 cells with G1-like CA manifested the general feature of the HRS/IRR phenomena.


Assuntos
Nêutrons , Prótons , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos
6.
Bull Exp Biol Med ; 173(6): 749-753, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36329332

RESUMO

Radiation response of cancer stem cells was studied in two breast cancer cell lines: luminal A (MCF-7) and triple negative (MDA-MB-231) subtypes. The relative number of CD44+CD24-/low cancer stem cells of the MCF-7 line increased by 1.7 times under the influence of γ-irradiation at a dose of 4 Gy (p=0.047 in comparison with the control). However, no significant changes were found in the relative number of cancer stem cells and the expression level of OCT4, NANOG, and SOX2 genes after neutron, proton beam irradiation or their combined action at a total equieffective dose of 4 Gy in comparison with the control in both cell lines. The absolute number of cancer stem cells decreased under the influence of neutron or proton radiation in comparison with the control (p<0.05 for both cell lines). At the same time, the effects of sequential exposures to neutron and proton radiation on the size of the cancer stem cell pool depended on the molecular subtype of cancer cells. Additive interaction was observed for MCF-7 line and antagonistic one for MDA-MB-231 line (coefficients of synergism were 0.96 and 0.45, respectively).


Assuntos
Neoplasias da Mama , Prótons , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células MCF-7 , Nêutrons , Linhagem Celular Tumoral
7.
Cytogenet Genome Res ; 161(6-7): 352-361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34488220

RESUMO

Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.


Assuntos
Citogenética/métodos , Linfócitos/efeitos da radiação , Nêutrons , Raios X , Adulto , Animais , Células Cultivadas , Inversão Cromossômica/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Linfócitos/citologia , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Testes para Micronúcleos/métodos , Pessoa de Meia-Idade
8.
Radiat Environ Biophys ; 60(2): 317-328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33704559

RESUMO

In a previous study, posture-dependent dose coefficients (DCs) for photon external exposures were calculated using the adult male and female mesh-type reference computational phantoms (MRCPs) of the International Commission on Radiological Protection (ICRP) that had been transformed into five non-standing postures (i.e. walking, sitting, bending, kneeling, and squatting). As an extension, the present study was conducted to establish another DC dataset for external exposures to neutrons by performing Monte Carlo radiation transport simulations with the adult male and female MRCPs in the five non-standing postures. The resulting dataset included the DCs for absorbed doses (i.e., organ/tissue-averaged absorbed doses) delivered to 29 individual organs/tissues, and for effective doses for neutron energies ranging from 10-9 to 104 MeV in six irradiation geometries: antero-posterior (AP), posteroanterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT), and isotropic (ISO) geometries. The comparison of DCs for the non-standing MRCPs with those of the standing MRCPs showed significant differences. In the lateral irradiation geometries, for example, the standing MRCPs overestimate the breast DCs of the squatting MRCPs by up to a factor of 4 due to the different arm positions but underestimate the gonad DCs by up to about 17 times due to the different leg positions. The impact of different postures on effective doses was generally less than that on organ doses but still significant; for example, the standing MRCPs overestimate the effective doses of the bending MRCPs only by 20% in the AP geometry at neutron energies less than 50 MeV, but underestimate those of the kneeling MRCPs by up to 40% in the lateral geometries at energies less than 0.1 MeV.


Assuntos
Nêutrons , Postura , Doses de Radiação , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Exposição à Radiação
9.
Proc Jpn Acad Ser B Phys Biol Sci ; 97(6): 292-323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121042

RESUMO

Interest has been growing in the development of medical radioisotopes used for noninvasive nuclear medicine imaging of disease and cancer therapy. Especially the development of an alternative production scheme of 99Mo, the mother radioisotope of 99mTc used for imaging, is required, because the current supply chain of the reactor product 99Mo is fragile worldwide. We have proposed a new production scheme of 99Mo as well as therapeutic radioisotopes, such as 64Cu and 67Cu, using accelerator neutrons provided by the natC(d,n) reaction. Based on this scheme we have obtained high-quality 99mTc, 64Cu, and 67Cu suitable for clinical use by developing both production and separation methods of the radioisotopes. We proposed a new facility to constantly and reliably produce a wide variety of high-quality, carrier-free radioisotopes, including 99Mo, with accelerator neutrons. We report on the development of the proposed scheme and future prospects of the facility toward the domestic production of medical radioisotopes.


Assuntos
Molibdênio , Tecnécio , Nêutrons , Radioisótopos , Compostos Radiofarmacêuticos
10.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445726

RESUMO

A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.


Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Nêutrons/efeitos adversos , Animais , Comportamento Animal/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos , Plasticidade Neuronal/efeitos da radiação
11.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915974

RESUMO

The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.


Assuntos
Região CA1 Hipocampal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Plasticidade Neuronal/efeitos da radiação , Nêutrons/efeitos adversos , Córtex Pré-Frontal/efeitos da radiação , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Região CA1 Hipocampal/metabolismo , Dendritos/efeitos da radiação , Proteína 4 Homóloga a Disks-Large/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
12.
Biochem Biophys Res Commun ; 533(4): 1048-1053, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33012511

RESUMO

Our immune system can be exposed to neutral ionizing radiation. This work proposed to investigate the impacts of low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells (PBMCs) as the primary immune cells. The effects have been followed at the time of 0, 2, 4, and 8 days after neutron exposure. Sixty-four female Wistar rats were used in this work. Thirty-two of them were irradiated using a low-dose fast neutron (241Am-Be, 0.2 mGy/h). The other thirty-two were utilized as a control group. The changes in their lipids molecular structure were investigated using Fourier transform infrared (FTIR) spectroscopy. Besides, lipids were extracted, and the total phospholipids contents were estimated. At the time of 2 and 4 days after irradiation, the results showed significant changes in the molecular structure of lipids in those irradiated samples compare with their control samples, and multivariate analysis succeeded in differentiating between control and irradiated rats. In contrast, no alterations between control and irradiated were detected at the time of 0 and 8 days after. The low-dose fast neutron could induce free radicals, which indirectly affect the molecular structure of the lipids and could damage the phospholipids molecules, and the damage could be repaired.


Assuntos
Nêutrons Rápidos/efeitos adversos , Leucócitos Mononucleares/efeitos da radiação , Fosfolipídeos/análise , Fosfolipídeos/efeitos da radiação , Animais , Feminino , Estrutura Molecular , Fosfolipídeos/química , Análise de Componente Principal , Radiação Ionizante , Ratos , Ratos Wistar , Fatores de Risco , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Sensors (Basel) ; 20(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992535

RESUMO

Tools for remote radiation sensing are essential for environmental safety and nuclear power applications. The use of unmanned aerial systems (UASs) equipped with sensors allows for substantially reducing the radiation exposure of personnel. An ambient temperature Cs2LiYCl6:Ce3+ (CLYC) elpasolite scintillation sensor for simultaneous gamma and neutron measurements was designed as a user-friendly "plug and fly" module integrated into an octocopter robotic platform. Robot Operating System (ROS) was used to analyze the sensor's data. The measured CLYC's energy resolution was <5% at 662 keV gamma rays; neutron flux was measured using 6Li(n,α)t reaction. Time and GPS data were combined with radiation data in the ROS, supporting real time monitoring and assessment tasks, as well as radiation source search missions. Because UASs can be irradiated, radiation damage of the sensor and robot's electronics was estimated using FLUKA code.

14.
HNO ; 68(9): 678-687, 2020 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-32821981

RESUMO

Surgical treatment in patients with rare adenoid cystic carcinoma (ACC) of the salivary glands is considered to be the state of the art. With respect to an additional radiotherapy there are different approaches regarding the type of radiotherapy and timing. In this study the overall survival and recurrence-free survival in 52 individuals with salivary gland ACC who were treated at the University Hospital in Essen and received irradiation with fast neutrons and photons (mixed beam technique) either A) immediately following surgical treatment or B) only after the appearance of local recurrence were compared. Group A (n = 28, first diagnosis, FD September 1991-September 2009) received adjuvant radiotherapy immediately postoperative, group B (n = 24, FD June 1979-November 2001) underwent primarily surgical tumor resection according to the treatment regimen at that time and were irradiated only on the appearance of a local recurrence. In comparison to group B, patients in group A showed a lower recurrence rate and a significantly longer local relapse-free survival. Group B, however, showed a significantly higher overall survival. The frequency of distant metastasis occurred equally in both groups but the onset of distant metastasis was significantly earlier in group A. In general, overall survival was negatively influenced by distant metastasis. The local recurrence rate was very high after primary surgical treatment only. The immediate adjuvant high-linear energy transfer (LET) radiotherapy reduced the local recurrence rates. Irradiation after the appearance of a recurrence had a positive influence on overall survival. Overall, definitive high-LET radiotherapy in the mixed beam technique enabled high local control rates both primarily postoperative and also locoregional recurrences.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Carcinoma Adenoide Cístico/radioterapia , Carcinoma Adenoide Cístico/cirurgia , Humanos , Recidiva Local de Neoplasia , Prognóstico , Estudos Retrospectivos , Neoplasias das Glândulas Salivares/radioterapia , Neoplasias das Glândulas Salivares/cirurgia , Glândulas Salivares , Taxa de Sobrevida
15.
Plant Cell Environ ; 42(5): 1645-1656, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506732

RESUMO

Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2 O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.


Assuntos
Tillandsia , Tricomas/fisiologia , Água/fisiologia , Transporte Biológico , Desidratação
16.
Theor Appl Genet ; 132(11): 2965-2983, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31324928

RESUMO

KEY MESSAGE: Protein content of soybean is critical for utility of soybean meal. A fast-neutron-induced deletion on chromosome 12 was found to be associated with increased protein content. Soybean seed composition affects the utility of soybean, and improving seed composition is an essential breeding goal. Fast neutron radiation introduces genomic mutations resulting in novel variation for traits of interest. Two elite soybean lines were irradiated with fast neutrons and screened for altered seed composition. Twenty-three lines with altered protein, oil, or sucrose content were selected based on near-infrared spectroscopy data from five environments and yield tested at five locations. Mutants with significantly increased protein averaged 19.1-36.8 g kg-1 more protein than the parents across 10 environments. Comparative genomic hybridization (CGH) identified putative mutations in a mutant, G15FN-12, that has 36.8 g kg-1 higher protein than the parent genotype, and whole genome sequencing (WGS) of the mutant has confirmed these mutations. An F2:3 population was developed from G15FN-12 to determine association between genomic changes and increased protein content. Bulked segregant analysis of the population using the SoySNP50K BeadChip identified a CGH- and WGS-confirmed deletion on chromosome 12 to be responsible for elevated protein content. The population was genotyped using a KASP marker designed at the mutation region, and significant association (P < 0.0001) between the deletion on chromosome 12 and elevated protein content was observed and confirmed in the F3:4 generation. The F2 segregants homozygous for the deletion averaged 27 g kg-1 higher seed protein and 8 g kg-1 lower oil than homozygous wild-type segregants. Mutants with altered seed composition are a new resource for gene function studies and provide elite materials for genetic improvement of seed composition.


Assuntos
Glycine max/química , Proteínas de Plantas/análise , Sementes/química , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Nêutrons Rápidos , Genótipo , Mutagênese , Proteínas de Plantas/genética , Sementes/genética , Análise de Sequência de DNA , Deleção de Sequência , Glycine max/genética
17.
Environ Res ; 175: 84-99, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108356

RESUMO

Neutron radiation is very harmful to both individual organisms and the environment. A n understanding of all aspects of both direct and indirect effects of radiation is necessary to accurately assess the risk of neutron radiation exposure. This review seeks to review current evidence in the literature for radiation-induced bystander effects and related effects attributable to neutron radiation. It also attempts to determine if the suggested evidence in the literature is sufficient to justify claims that neutron-based radiation can cause radiation-induced bystander effects. Lastly, the present paper suggests potential directions for future research concerning neutron radiation-induced bystander effects. Data was collected from studies investigating radiation-induced bystander effects and was used to mathematically generate pooled datasets and putative trends; this was done to potentially elucidate both the appearance of a conventional trend for radiation-induced bystander effects in studies using different types of radiation. Furthermore, literature review was used to compare studies utilizing similar tissue models to determine if neutron effects follow similar trends as those produced by electromagnetic radiation. We conclude that the current understanding of neutron-attributable radiation-induced bystander effects is incomplete. Various factors such as high gamma contamination during the irradiations, unestablished thresholds for gamma effects, different cell lines, energies, and different dose rates affected our ability to confirm a relationship between neutron irradiation and RIBE, particularly in low-dose regions below 100 mGy. It was determined through meta-analysis of the data that effects attributable to neutrons do seem to exist at higher doses, while gamma effects seem likely predominant at lower dose regions. Therefore, whether neutrons can induce bystander effects at lower doses remains unclear. Further research is required to confirm these findings and various recommendations are made to assist in this effort. With these recommendations, we hope that research conducted in the future will be better equipped to explore the indirect effects of neutron radiation as they pertain to biological and ecological phenomena.


Assuntos
Efeito Espectador , Nêutrons , Linhagem Celular , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Humanos , Nêutrons/efeitos adversos
18.
Int J Hyperthermia ; 36(1): 1073-1078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709846

RESUMO

The depth dose profiles of photons mirror those of fast neutrons. However, in contrast to the high linear energy transfer (LET) characteristics of neutrons; photons exhibit low LET features. Hyperthermia (HT) inhibits the repair of radiation-induced DNA damage and is cytotoxic to the radioresistant hypoxic tumor cells. Thus, thermoradiobiologically, HT simulates high LET radiation with photons. At temperatures of 39-45 °C, the physiological vasodilation allows rapid heat dissipation from normal tissues. On the contrary, the chaotic and relatively rigid tumor vasculature results in heat retention leading to higher intratumoural temperatures. Consequently, the high LET attributes of HT with photon radiations are mostly limited to the confines of the heated tumor while the normothermic normal tissues would be irradiated with low LET photons. HT thereby augments photon therapy by conferring therapeutic advantages of high LET radiations to the tumors akin to neutrons, while the 'heat-sink' effect spares the normal tissues from thermal radiosensitization. Thus, photon thermoradiotherapy imparts radiobiological advantages selectively to tumors analogous to neutrons without exaggerating normal tissue morbidities. The later has been the major concern with clinical fast neutron beam therapy. Outcomes reported from several clinical trials in diverse tumor sites add testimony to the enhanced therapeutic efficacy of photon thermoradiotherapy.


Assuntos
Febre/radioterapia , Neoplasias/radioterapia , Fótons/uso terapêutico , Humanos
19.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661782

RESUMO

The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos da radiação , Nêutrons Rápidos , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Masculino , Radiação Ionizante , Fatores de Tempo
20.
Rep Pract Oncol Radiother ; 24(1): 41-46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30337847

RESUMO

AIM: The thermal neutron, epithermal neutron and high-energy photon fluence were measured in this work around the Varian 21EX 23 MV CLINAC, which is operated in Albairouni hospital in Damascus, Syria. BACKGROUND: Photoneutron measurements around medical CLINAC aim to protect both patients and staff from unwanted radiation. MATERIALS AND METHODS: Neutron and photon activation techniques were applied using gold foils. RESULTS: It was found that high-energy photons fluence has practically a constant value in the field size. The thermal and epithermal neutron fluence along ox and oy axes has the same order of magnitude. CONCLUSION: Gold foils have been used successfully to measure neutron flux and high-energy photons simultaneously using activation techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA