Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 36(9-10): 601-617, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654456

RESUMO

The differentiation of embryonic stem cells (ESCs) into a lineage-committed state is a dynamic process involving changes in cellular metabolism, epigenetic modifications, post-translational modifications, gene expression, and RNA processing. Here we integrated data from metabolomic, proteomic, and transcriptomic assays to characterize how alterations in NAD+ metabolism during the differentiation of mouse ESCs lead to alteration of the PARP1-mediated ADP-ribosylated (ADPRylated) proteome and mRNA isoform specialization. Our metabolomic analyses indicate that mESCs use distinct NAD+ biosynthetic pathways in different cell states: the de novo pathway in the pluripotent state, and the salvage and Preiss-Handler pathways as differentiation progresses. We observed a dramatic induction of PARP1 catalytic activity driven by enhanced nuclear NAD+ biosynthesis during the early stages of mESC differentiation (e.g., within 12 h of LIF removal). PARP1-modified proteins in mESCs are enriched for biological processes related to stem cell maintenance, transcriptional regulation, and RNA processing. The PARP1 substrates include core spliceosome components, such as U2AF35 and U2AF65, whose splicing functions are modulated by PARP1-mediated site-specific ADP-ribosylation. Finally, we observed that splicing is dysregulated genome-wide in Parp1 knockout mESCs. Together, these results demonstrate a role for the NAD+-PARP1 axis in the maintenance of mESC state, specifically in the splicing program during differentiation.


Assuntos
NAD , Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Animais , Células-Tronco Embrionárias/metabolismo , Camundongos , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteômica
2.
Physiol Rev ; 102(1): 339-341, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494892

RESUMO

During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline). The worldwide spread of SARS-CoV-2 virus revealed specific susceptibilities to the virus among the elderly and individuals with age-related syndromes. These populations were more likely to experience a hyperimmune response characterized by a treatment-resistant acute lung pathology accompanied by multiple organ failure. These observations underscore the interplay between the virus, the biology of aging, and outcomes observed in the most severe cases of SARS-CoV-2 infection. The ectoenzyme CD38 has been implicated in the process of "inflammaging" in aged tissues. In a current publication, Horenstein et al. present evidence to support the hypothesis that CD38 plays a central role in altered immunometabolism resulting from COVID-19 infection. The authors discuss a critical but underappreciated trifecta of CD38-mediated NAD+ metabolism, aging, and COVID-19 immune response and speculate that the CD38/NAD+ axis is a promising therapeutic target for this disease.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , COVID-19/fisiopatologia , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , ADP-Ribosil Ciclase 1/genética , Envelhecimento , Regulação Enzimológica da Expressão Gênica , Humanos , Glicoproteínas de Membrana/genética , NAD/metabolismo
3.
Traffic ; 25(1): e12926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084815

RESUMO

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Assuntos
Glicólise , NAD , NAD/metabolismo , Glicólise/fisiologia , Axônios/metabolismo , Trifosfato de Adenosina/metabolismo , Piruvatos/metabolismo
4.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 120(44): e2312999120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883434

RESUMO

Tpt1 is an essential agent of fungal and plant tRNA splicing that removes an internal RNA 2'-phosphate generated by tRNA ligase. Tpt1 also removes the 2'-phosphouridine mark installed by Ark1 kinase in the V-loop of archaeal tRNAs. Tpt1 performs a two-step reaction in which the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate, and transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Here, we present structures of archaeal Tpt1 enzymes, captured as product complexes with ADP-ribose-1″-PO4, ADP-ribose-2″-PO4, and 2'-OH RNA, and as substrate complexes with 2',5'-ADP and NAD+, that illuminate 2'-PO4 junction recognition and catalysis. We show that archaeal Tpt1 enzymes can use the 2'-PO4-containing metabolites NADP+ and NADPH as substrates for 2'-PO4 transfer to NAD+. A role in 2'-phospho-NADP(H) dynamics provides a rationale for the prevalence of Tpt1 in taxa that lack a capacity for internal RNA 2'-phosphorylation.


Assuntos
NAD , RNA , RNA/metabolismo , NADP , NAD/metabolismo , RNA de Transferência/genética , Adenosina Difosfato Ribose/metabolismo , Fosfatos/metabolismo
6.
EMBO Rep ; 24(6): e56156, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987917

RESUMO

Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+ ) levels. The HIF-1α/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+ metabolism.


Assuntos
NAD , Triptofano , Camundongos , Animais , Triptofano/metabolismo , Células Matadoras Naturais , Glicólise/genética , Hipóxia/metabolismo , Hipóxia Celular , Oxigênio/metabolismo , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
EMBO Rep ; 24(10): e56596, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37575034

RESUMO

SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.


Assuntos
Cardiolipinas , NAD , Cardiolipinas/metabolismo , Ligantes , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Humanos
8.
Proc Natl Acad Sci U S A ; 119(35): e2211310119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994674

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD+-dependent enzymes. Cellular NAD+ levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD+ via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD+, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD+ levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD+-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.


Assuntos
ADP-Ribosil Ciclase 1 , Astrócitos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , NAD , ADP-Ribosil Ciclase 1/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Autoimunidade , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo
9.
J Mol Cell Cardiol ; 195: 45-54, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096536

RESUMO

Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.

10.
Semin Cell Dev Biol ; 126: 15-26, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34281771

RESUMO

Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.


Assuntos
Relógios Circadianos , Sirtuínas , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo , NAD/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
11.
Am J Physiol Cell Physiol ; 326(5): C1423-C1436, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497113

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Quinurenina 3-Mono-Oxigenase , NAD , Triptofano , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/enzimologia , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Camundongos Endogâmicos C57BL , NAD/metabolismo , NAD/biossíntese , Triptofano/metabolismo
12.
J Biol Chem ; 299(11): 105290, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758001

RESUMO

Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.


Assuntos
Acinetobacter baumannii , NAD , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Deutério , Hidrolases/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , Domínios Proteicos
13.
J Biol Chem ; 299(7): 104893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286037

RESUMO

The everninomicins are bacterially produced antibiotic octasaccharides characterized by the presence of two interglycosidic spirocyclic ortho-δ-lactone (orthoester) moieties. The terminating G- and H-ring sugars, L-lyxose and C-4 branched sugar ß-D-eurekanate, are proposed to be biosynthetically derived from nucleotide diphosphate pentose sugar pyranosides; however, the identity of these precursors and their biosynthetic origin remain to be determined. Herein we identify a new glucuronic acid decarboxylase from Micromonospora belonging to the superfamily of short-chain dehydrogenase/reductase enzymes, EvdS6. Biochemical characterization demonstrated that EvdS6 is an NAD+-dependent bifunctional enzyme that produces a mixture of two products, differing in the sugar C-4 oxidation state. This product distribution is atypical for glucuronic acid decarboxylating enzymes, most of which favor production of the reduced sugar and a minority of which favor release of the oxidized product. Spectroscopic and stereochemical analysis of reaction products revealed that the first product released is the oxidatively produced 4-keto-D-xylose and the second product is the reduced D-xylose. X-ray crystallographic analysis of EvdS6 at 1.51 Å resolution with bound co-factor and TDP demonstrated that the overall geometry of the EvdS6 active site is conserved with other SDR enzymes and enabled studies probing structural determinants for the reductive half of the net neutral catalytic cycle. Critical active site threonine and aspartate residues were unambiguously identified as essential in the reductive step of the reaction and resulted in enzyme variants producing almost exclusively the keto sugar. This work defines potential precursors for the G-ring L-lyxose and resolves likely origins of the H-ring ß-D-eurekanate sugar precursor.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Carboxiliases , Micromonospora , Família Multigênica , Xilose , Aminoglicosídeos/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Micromonospora/enzimologia , Micromonospora/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
J Biol Chem ; 299(8): 104919, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315792

RESUMO

Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and ß-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for ß-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.


Assuntos
Coenzimas , Escherichia coli , beta-Alanina , beta-Alanina/metabolismo , Coenzima A/biossíntese , Coenzimas/biossíntese , Piridoxal , Fosfato de Piridoxal/metabolismo , Vitaminas/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo
15.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376490

RESUMO

Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.


Assuntos
Vírus da Doença de Newcastle , Sirtuínas , Animais , NAD , Vírus da Doença de Newcastle/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuínas/genética , Galinhas , Linhagem Celular
16.
Biochem Biophys Res Commun ; 731: 150371, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39004065

RESUMO

Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.

17.
Mol Carcinog ; 63(4): 577-588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197493

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Herein, we investigated the role of nicotinamide mononucleotide (NMN) in HCC progression. HCC cells were treated with NMN (125, 250, and 500 µM), and then nicotinamide adenine dinucleotide (NAD+ ) and NADH levels in HCC cells were measured to calculate NAD+ /NADH ratio. Cell proliferation, apoptosis, autophagy and ferroptosis were determined. AMPK was knocked down to confirm the involvement of AMPK/mTOR signaling. Furthermore, tumor-inhibitory effect of NMN was investigated in xenograft models. Exposure to NMN dose-dependently increased NAD+ level and NAD+ /NADH ratio in HCC cells. After NMN treatment, cell proliferation was inhibited, whereas apoptosis was enhanced in both cell lines. Additionally, NMN dose-dependently enhanced autophagy/ferroptosis and activated AMPK/mTOR pathway in HCC cells. AMPK knockdown partially rescued the effects of NMN in vitro. Furthermore, NMN treatment restrained tumor growth in nude mice, activated autophagy/ferroptosis, and promoted apoptosis and necrosis in tumor tissues. The results indicate that NMN inhibits HCC progression by inducing autophagy and ferroptosis via AMPK/mTOR signaling. NMN may serve as a promising agent for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , NAD , Proteínas Quinases Ativadas por AMP , Mononucleotídeo de Nicotinamida , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR , Nucleotídeos , Autofagia
18.
Magn Reson Med ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044608

RESUMO

PURPOSE: The purpose of this study was to determine the effect of acute nicotinamide riboside (NR) supplementation on cerebral nicotinamide adenine dinucleotide (NAD+) levels in the human brain in vivo by means of downfield proton MRS (DF 1H MRS). METHODS: DF 1H MRS was performed on 10 healthy volunteers in a 7.0 T MRI scanner with spectrally selective excitation and spatially selective localization to determine cerebral NAD+ levels on two back-to-back days: once after an overnight fast (baseline) and once 4 h after oral ingestion of nicotinamide riboside (900 mg). Additionally, two more baseline scans were performed following the same paradigm to assess test-retest reliability of the NAD+ levels in the absence of NR. RESULTS: NR supplementation increased mean NAD+ concentration compared to the baseline (0.458 ± 0.053 vs. 0.392 ± 0.058 mM; p < 0.001). The additional two baseline scans demonstrated no differences in mean NAD+ concentrations (0.425 ± 0.118 vs. 0.405 ± 0.082 mM; p = 0.45), and no difference from the first baseline scan (F(2, 16) = 0.907; p = 0.424). CONCLUSION: These preliminary results confirm that acute NR supplementation increases cerebral NAD+ levels in healthy human volunteers and shows the promise of DF 1H MRS utility for robust detection of NAD+ in humans in vivo.

19.
Toxicol Appl Pharmacol ; 482: 116799, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160893

RESUMO

Doxorubicin (DOX) is one of the most widely used antineoplastic drugs with known cardiotoxicity while other organ toxicity, such as hepatotoxicity is not well defined. This study was to explore the role of nicotinamide adenine dinucleotide (NAD+) in DOX-induced hepatotoxicity. DOX (20 mg/kg) induced acute liver injury and oxidative stress in C57BL/6 J mice at 48 h. Notably, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H dehydrogenase quinone 1 (NQO1) were downregulated. NAD+ deficiency was confirmed due to DOX exposure. Mechanistically, the downregulation of nicotinamide mononucleotide adenylyl transferase 1 (NMNAT1), NMNAT2 and NMNAT3, while no alteration of nicotinamide phosphoribosyl transferase was proved. As a consequence of NAD+ deficiency, the expression of poly-ADP-ribose polymerase1 (PARP1), CD38 and Sirtuin1 (SIRT1) were reduced. Furthermore, supplementation of NAD+ (200 mg/kg/day) or its precursor nicotinamide mononucleotide (NMN) (500 mg/kg/day) alleviated liver injury, attenuated oxidative stress, and elevated the downregulation of Nrf2 and NQO1. More importantly, compromised expression of NMNAT1-3, PARP1, CD38 and SIRT1 were improved by NAD+ and NMN. In conclusion, NAD+ deficiency due to NMNATs expression inhibition may attribute to the pathogenesis of DOX-induced hepatotoxicity, thus providing new insights for mitigating DOX side effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , NAD , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2 , Camundongos Endogâmicos C57BL , Doxorrubicina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia
20.
Arch Biochem Biophys ; 757: 110025, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740275

RESUMO

Drug metabolism by human gut microbes is often exemplified by azo bond reduction in the anticolitic prodrug sulfasalazine. Azoreductase activity is often found in incubations with cell cultures or ex vivo gut microbiome samples and contributes to the xenobiotic metabolism of drugs and food additives. Applying metagenomic studies to personalized medicine requires knowledge of the genes responsible for sulfasalazine and other drug metabolism, and candidate genes and proteins for drug modifications are understudied. A representative gut-abundant azoreductase from Anaerotignum lactatifermentan DSM 14214 efficiently reduces sulfasalazine and another drug, phenazopyridine, but could not reduce all azo-bonded drugs in this class. We used enzyme kinetics to characterize this enzyme for its NADH-dependent reduction of these drugs and food additives and performed computational docking to provide the groundwork for understanding substrate specificity in this family. We performed an analysis of the Flavodoxin-like fold InterPro family (IPR003680) by computing a sequence similarity network to classify distinct subgroups of the family and then performed chemically-guided functional profiling to identify proteins that are abundant in the NIH Human Microbiome Project dataset. This strategy aims to reduce the number of unique azoreductases needed to characterize one protein family in the diverse set of potential drug- and dye-modifying activities found in the human gut microbiome.


Assuntos
Microbioma Gastrointestinal , NADH NADPH Oxirredutases , Nitrorredutases , Humanos , Nitrorredutases/metabolismo , Nitrorredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/química , Corantes/metabolismo , Simulação de Acoplamento Molecular , Especificidade por Substrato , Sulfassalazina , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Cinética , Clostridiales/enzimologia , Clostridiales/genética , Compostos Azo/metabolismo , Compostos Azo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA