RESUMO
Reduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH2)2) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring. The observations suggest that the ocean is the primary emission source, but further studies are required to understand the responsible mechanisms. Urea is also observed aloft due to long-range transport of biomass-burning plumes. These observations alongside global model simulations point to urea being an important, and currently unaccounted for, component of reduced-N to the remote marine atmosphere. Airborne transfer of urea between nutrient-rich and -poor parts of the ocean can occur readily and could impact ecosystems and oceanic uptake of carbon dioxide, with potentially important climate implications.
RESUMO
Climate change and anthropogenic activities have significantly contributed to the degradation of wet meadows on the Qinghai-Tibet Plateau (QTP). Soil nitrogen (N) availability is a crucial determinant of the productivity of wet meadow vegetation. Furthermore, soil microbial nitrogen functional genes (NFGs) are critical in the transformation of soil N. Nevertheless, the dynamics of NFGs in response to vegetation degradation, as well as the underlying drivers, remain poorly understood. In this study, wet meadows at varying levels of vegetation degradation on the QTP, categorized as non-degraded (ND), slightly degraded (SD), moderately degraded (MD), and heavily degraded (HD), were examined. Soil samples from depths of 0 to 10 cm and 10 to 20 cm were collected during different growth cycles (June 2020, August 2020, and May 2021). The analysis focused on NFGs involved in organic nitrogen fixation (nifH), archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB, respectively), and nitrite reduction (nirK), utilizing real-time fluorescence quantitative PCR. Our findings indicate a significant decline in the abundance of NFGs with intensified vegetation degradation, exhibiting notable spatial and temporal fluctuations. Specifically, the relative NFGs followed the pattern: nirK > amoA-AOA > amoA-AOB > nifH. Redundancy analysis revealed that vegetation cover was the primary regulator of NFGs abundance, accounting for 56.1%-57% of the variation. Additionally, soil total nitrogen, pH, and total phosphorus content were responsible for 38.5%, 28.2%, and 7% of the variability in NFGs, respectively. The (amoA-AOA + amoA-AOB + nirK) ratios associated with effective N transformation indicated that the vegetation degradation process moderately increased the nitrification potential. IMPORTANCE: Our research investigates how the degradation of meadows affects the tiny organisms in soil that help plants use nitrogen, which is essential for their growth. In the Qinghai-Tibet Plateau, a region known for its unique ecosystems, we found that as meadows deteriorate-due to climate change and human activities-the number of these beneficial organisms significantly decreases. This decline could reduce soil fertility, impacting plant life and the overall health of the ecosystem. Understanding these changes helps us grasp how environmental pressures influence soil and plant health. Such knowledge is crucial for developing strategies to preserve these vulnerable ecosystems and ensure they continue to sustain biodiversity and provide resources for local communities.
Assuntos
Bactérias , Pradaria , Nitrogênio , Microbiologia do Solo , Solo , Tibet , Nitrogênio/metabolismo , Solo/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Archaea/genética , Archaea/metabolismo , Fixação de Nitrogênio , Mudança ClimáticaRESUMO
Microbiota have co-evolved with plants over millions of years and are intimately linked to plants, ranging from symbiosis to pathogenesis. However, our understanding of the existence of a shared core microbiota across phylogenetically diverse plants remains limited. A common garden field experiment was conducted to investigate the rhizosphere microbial communities of phylogenetically contrasting herbaceous families. Through a combination of metagenomic sequencing, analysis of plant economic traits, and soil biochemical properties, we aimed to elucidate the eco-evolutionary role of the core rhizosphere microbiota in light of plant economic strategies. We identified a conserved core microbiota consisting of 278 taxa that was closely associated with the phylogeny of the plants studied. This core microbiota actively participated in multiple nitrogen metabolic processes and showed a strong correlation with the functional potential of rhizosphere nitrogen cycling, thereby serving as an extended trait in the plant nitrogen acquisition. Furthermore, our examination of simulated species loss revealed the crucial role of the core microbiota in maintaining the rhizosphere community's network stability. Our study highlighted that the core microbiota, which exhibited a phylogenetically conserved association with plants, potentially represented an extension of the plant phenotype and played an important role in nitrogen acquisition. These findings held implications for the utilization of microbiota-mediated plant functions.
Assuntos
Microbiota , Nitrogênio , Filogenia , Rizosfera , Nitrogênio/metabolismo , Evolução Biológica , Plantas/microbiologia , Plantas/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Característica Quantitativa HerdávelRESUMO
Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.
Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismoRESUMO
The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a 15N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing. The results revealed that biological nitrogen fixation in peanut was 50 mg and transfer to maize was 230 mg when the roots interacted. Moreover, root interactions significantly increased nitrogen content and the activities of protease, dehydrogenase (DHO) and nitrate reductase in the rhizosphere soil. Metagenomic analyses and structural equation modelling indicated that nrfC and nirA genes played important roles in regulating nitrogen fixation and transfer. Bradyrhizobium was affected by soil nitrogen content and DHO, indirectly influencing the efficiency of nitrogen fixation and transfer. Overall, our study identified key bacterial genera and genes associated with nitrogen fixation and transfer, thus advancing our understanding of interspecific interactions and highlighting the pivotal role of soil microorganisms and functional genes in maintaining soil ecosystem stability from a molecular ecological perspective.
Assuntos
Arachis , Metagenômica , Ciclo do Nitrogênio , Fixação de Nitrogênio , Rizosfera , Microbiologia do Solo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fixação de Nitrogênio/genética , Ciclo do Nitrogênio/genética , Arachis/genética , Arachis/microbiologia , Arachis/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo/química , MetagenomaRESUMO
Symbiotic nitrogen (N) fixation (SNF), replenishing bioavailable N for terrestrial ecosystems, exerts decisive roles in N cycling and gross primary production. Nevertheless, it remains unclear what determines the variability of SNF rate, which retards the accurate prediction for global N fixation in earth system models. This study synthesized 1230 isotopic observations to elucidate the governing factors underlying the variability of SNF rate. The SNF rates varied significantly from 3.69 to 12.54 g N m-2 year-1 across host plant taxa. The traits of host plant (e.g. biomass characteristics and taxa) far outweighed soil properties and climatic factors in explaining the variations of SNF rate, accounting for 79.0% of total relative importance. Furthermore, annual SNF yield contributed to more than half of N uptake for host plants, which was consistent across different ecosystem types. This study highlights that the biotic factors, especially host plant traits (e.g. biomass characteristics and taxa), play overriding roles in determining SNF rate compared with soil properties. The suite of parameters for SNF lends support to improve N fixation module in earth system models that can provide more confidence in predicting bioavailable N changes in terrestrial ecosystems.
Assuntos
Ecossistema , Fixação de Nitrogênio , Biomassa , Planeta Terra , SoloRESUMO
Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.
Assuntos
Secas , Ecossistema , Ciclo do Nitrogênio , Isótopos de Nitrogênio , Solo , Solo/química , Isótopos de Nitrogênio/análise , China , Nitrogênio/análise , Nitrogênio/metabolismo , Clima DesérticoRESUMO
While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.
Assuntos
Rizosfera , Solo , Solo/química , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismoRESUMO
Anthropogenic land-use practices influence ecosystem functions and the environment. Yet, the effect of global land-use change on ecosystem nitrogen (N) cycling remains unquantified despite that ecosystem N cycling plays a critical role in maintaining food security. Here, we analysed 2430 paired observations globally to show that converting natural to managed ecosystems increases ratios of autotrophic nitrification to ammonium immobilisation and nitrate to ammonium, but decreases soil immobilisation of mineral N, causing increased N losses via leaching and gaseous N emissions, such as nitrous oxide (e.g., via denitrification), resulting in a leaky N cycle. Changing land use from intensively managed to one that resembles natural ecosystems reversed N losses by 108% on average, resulting in a more conservative N cycle. Structural equation modelling revealed that changes in soil organic carbon, pH and carbon to N ratio were more important than changes in soil moisture content and temperature in predicting ecosystem N retention capacities following land-use conversion and its reversion. The hotspots of leaky N cycles were mostly in equatorial and tropical regions, as well as in Western Europe, the United States and China. Our results suggest that whether an ecosystem exhibits a conservative N cycle after land-use reversion depends on management practices.
Assuntos
Ecossistema , Ciclo do Nitrogênio , Solo , Solo/química , Agricultura/métodos , Nitrogênio/metabolismo , Nitrogênio/análise , Modelos Teóricos , DesnitrificaçãoRESUMO
Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.
Assuntos
Mudança Climática , Gases de Efeito Estufa , Nutrientes , Compostos Orgânicos Voláteis , Gases de Efeito Estufa/análise , Compostos Orgânicos Voláteis/análise , Nutrientes/análise , Tundra , Metano/análise , Dióxido de Carbono/análise , Aquecimento Global , Temperatura , Butadienos , HemiterpenosRESUMO
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Assuntos
Ecossistema , Solo , Humanos , Agricultura , Plantas , CarbonoRESUMO
Research Highlight: Piccoli, G. C. d. O., Antiqueira, P. A. P., Srivastava, D. S., & Romero, G. Q. (2024). Trophic cascades within and across ecosystems: The role of anti-predatory defences, predator type and detritus quality. Journal of Animal Ecology, 00, 1-14. https://doi.org/10.1111/1365-2656.14063. Ecosystem functioning is controlled by the interplay between bottom-up supply of limiting nutrients and top-down animal feedback effects. However, the degree of animal versus nutrient control is context-dependent. A key challenge lies in characterizing this context dependency which is hypothesized to depend on differences in animal functional traits. Reporting on an important experiment, Piccoli et al. (2014) evaluate how interactions among functionally different predators and decomposer prey create context dependency in top-down control of a model system-tropical bromeliad tank ecosystems. Bromeliad plants hold water in their tanks supporting microcosm ecosystems containing terrestrial and aquatic insect larvae and arachnids. The ecosystems are supported by nutrients in plant litter that rains down from forest canopies into the tanks. Nutrients are released after litter is decomposed by a functionally diverse community of larval insect decomposers that differ in feeding mode and antipredator defence strategy. This decomposer community is preyed upon by an exclusively narrowly ranging aquatic insect larval predator and widely ranging spider predator that crosses between the aquatic and surrounding terrestrial ecosystems. Experimental manipulation of the animal community to test for the degree of control by predators mediated by the functionally diverse prey community included four treatments: (i) a control with the detritivores composing different function groups but without predators, (ii) the cross-ecosystem spider predator added, (iii) the purely aquatic damselfly larvae predator added and (iv) both predator types added to capture their interacting effect on ecosystem function (decomposition, nutrient release, and plant growth). Notably, the study resolved the causal pathways and strengths of direct and indirect control using structural equation modelling. These findings reveal how context dependency arises due to different capacities of the predators alone and together to overcome prey defences and control their abundances, with attendant cascading effects that diminished as well as enhanced decomposition and nutrient release to support bromeliad plant production. The study reveals that predators have a decided, albeit qualitatively and quantitatively different, hand in shaping the degree of bottom-up control through feedback effect on the release of limiting nutrients. This ground-breaking study provides a way forward in understanding the mechanisms determining context dependency in the control over ecosystem functioning.
Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Insetos/fisiologia , Bromeliaceae/fisiologia , Ecossistema , Larva/fisiologia , Larva/crescimento & desenvolvimento , Aracnídeos/fisiologiaRESUMO
PREMISE: Up to half of tropical forest plant species grow on other plants. Lacking access to soils, vascular epiphytes have unique adaptations for mineral nutrition. Among the most distinctive is the tank growth form of certain large bromeliads, which absorb nutrients that are cycled by complex microbial communities in water trapped among their overlapping leaf bases. However, tanks form only after years of growth by juvenile plants, which must acquire nutrients differently. Understanding how nutrient dynamics change during tank bromeliad development can provide key insights into the role of microorganisms in the maintenance of tropical forest biodiversity. METHODS: We evaluated variations in plant morphology, growth, foliar nitrogen physiology, and phyllosphere bacterial communities along a size gradient spanning the transition to tank formation in the threatened species Tillandsia utriculata. RESULTS: Sequential morphological and growth phases coincided with the transition to tank formation when the longest leaf on plants was between 14 and 19 cm. Before this point, foliar ammonium concentrations were very high, but after, leaf segments absorbed significantly more nitrate. Leaf-surface bacterial communities tracked ontogenetic changes in plant morphology and nitrogen metabolism, with less-diverse communities in tankless plants distinguished by a high proportion of taxa implicated in ureolysis, nitrogen fixation, and methanotrophy, whereas nitrate reduction characterized communities on individuals that could form a tank. CONCLUSIONS: Coupled changes in plant morphology, physiology, and microbiome function facilitate the transition between alternative nutritional modes in tank bromeliads. Comparing bromeliads across life stages and habitats may illuminate how nitrogen-use varies across scales.
RESUMO
Many groundwater and surface water bodies around the world show a puzzling and often steady increase in nitrogen (N) concentrations, despite a significant decline of agricultural N inputs. This study uses a combination of long-term hydrogeochemical and hydraulic monitoring, molecular characterization of dissolved organic matter (DOM), column experiment, and reactive transport modeling to unravel the processes controlling N-reactive transport and mass budgets under the impacts of dynamic hydrologic conditions at a field site in the central Yangtze River Basin. Our analysis shows that the desorption of ammonium (NH4+) from sediments via cation exchange reactions dominates N mobilization and aqueous N concentrations, while the mineralization of organic N compounds plays only a minor role. The reactive transport modeling results illustrate the important role of cation exchange reactions that are induced by temporary NH4+ input and cation concentration changes under the impact of both seasonal and long-term hydrologic variations. Historically, cation exchangers have acted as efficient storage devices and mitigated the impacts of high levels of NH4+ input. The NH4+ residing on cation exchanger sites later acts as a long-term N source to waters with the delayed desorption of sediment-bound NH4+ induced by the change of hydrologic conditions. Our results highlight the complex linkages between highly variable hydrologic conditions and NH4+ partitioning in near-surface, river-derived sediments.
RESUMO
Increased atmospheric nitrogen (N) deposition and climate warming are both anticipated to influence the N dynamics of northern temperate ecosystems substantially over the next century. In field experiments with N addition and warming treatments, cumulative treatment effects can be important for explaining variation in treatment effects on N dynamics over time; however, comparisons between data collected in the early vs. later years potentially can be confounded with interactions between treatment effects and inter-annual variation in environmental conditions or other factors. We compared the short-term versus long-term effects of N addition and warming on net N mineralization and N leaching in a grass-dominated old field using in situ soil cores. We added new N addition and warming plots (3 years old) to an existing field experiment (16 years old), which enabled comparison of the treatment effects at both time scales while controlling for potential inter-annual variation in other factors. For net N mineralization, there was a significant interaction between plot age and N addition over the growing season, and for extractable inorganic N there was a significant interaction between plot age and warming over winter. In both cases, the directions of the treatment effects differed among old and new plots. Moreover, the responses in the new plots differed from the responses observed previously when the 16-year-old plots had been new. These results demonstrate how inter-annual variation in responses, independent from cumulative treatment effects, can play an important role in interpreting long-term effects on soil N cycling in global change field experiments.
Assuntos
Nitrogênio , Poaceae , Solo , Solo/química , Estações do Ano , Ecossistema , Mudança ClimáticaRESUMO
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.
Assuntos
Cianobactérias , Ecossistema , Cianobactérias/metabolismo , Enxofre/metabolismo , Carbono/metabolismoRESUMO
It is predicted that oxygen minimum zones (OMZs) in the ocean will expand as a consequence of global warming and environmental pollution. This will affect the overall microbial ecology and microbial nitrogen cycle. As one of the world's largest alluvial estuaries, the Yangtze Estuary has exhibited a seasonal OMZ since the 1980s. In this study, we have uncovered the microbial composition, the patterns of community assembly and the potential for microbial nitrogen cycling within the water column of the Yangtze Estuary, with a particular focus on OMZ. Based on the 16 S rRNA gene sequencing, a specific spatial variation in the composition of prokaryotic communities was observed for each water layer, with the Proteobacteria (46.1%), Bacteroidetes (20.3%), and Cyanobacteria (10.3%) dominant. Stochastic and deterministic processes together shaped the community assembly in the water column. Further, pH was the most important environmental factor influencing prokaryotic composition in the surface water, followed by silicate, PO43-, and distance offshore (p < 0.05). Water depth, NH4+, and PO43- were the main factors in the bottom water (p < 0.05). At last, species analysis and marker gene annotation revealed candidate nitrogen cycling performers, and a rich array of nitrogen cycling potential in the bottom water of the Yangtze Estuary. The determined physiochemical parameters and potential for nitrogen respiration suggested that organic nitrogen and NO3- (or NO2-) are the preferred nitrogen sources for microorganisms in the Yangtze Estuary OMZ. These findings are expected to advance research on the ecological responses of estuarine oxygen minimum zones (OMZs) to future global climate perturbations.
Assuntos
Estuários , Nitrogênio , Oxigênio , China , Nitrogênio/metabolismo , Nitrogênio/análise , Oxigênio/metabolismo , Oxigênio/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Ciclo do NitrogênioRESUMO
Brownification in aquatic ecosystems under global change has attracted attention. The composition and quantity of dissolved organic matter transported from various land use types to lakes differ significantly, causing varying ecological effects of lake brownification by region. Bacterial communities make a significant contribution to the material cycle of ecosystems and are sensitive to environmental changes. In this study, a series of mesocosm systems were used to simulate forest lakes and urban lakes with different degrees of brownification, and a high-throughput amplicon sequencing technique was used to explore the changes in the composition, structure, and function of bacterial communities in shallow lakes undergoing brownification. Principal coordinate analysis (PCoA) and JensenâShannon distance typing analysis both indicated significant differences in bacterial communities between forest lakes and urban lakes. The α diversity of bacterial communities in urban lakes increased with the degree of brownification. However, whether forest lakes or urban lakes, brownification increased the abundance of carbon cycling-related bacterial phyla (Proteobacteria, Poribacteria, and Chloroflexi) and nitrogen cycling-related bacterial genera (Microbacteriaceae, Limnohabitans, Comamonadaceae, Bacillus, and Rhizobiales_Incertae_Sedis). Additionally, the carbon and nitrogen cycling functions of bacterial communities in forest lakes are dominant, while those in urban lakes are dominated by functions related to light. Our study has preliminarily revealed that lake brownification promotes the growth of carbon and nitrogen cycling microorganisms, providing a new paradigm for understanding the response of lake ecosystems in different catchment areas to environmental changes and the carbon and nitrogen cycling processes in shallow lake ecosystems.
Assuntos
Bactérias , Lagos , Ciclo do Nitrogênio , Lagos/microbiologia , Lagos/química , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono , Carbono/análise , Nitrogênio/análise , Microbiologia da ÁguaRESUMO
The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.
Assuntos
Interações Hospedeiro-Parasita , Caramujos , Trematódeos , Animais , Trematódeos/fisiologia , Trematódeos/metabolismo , Caramujos/parasitologia , Metaboloma , Metabolômica , Cromatografia Gasosa-Espectrometria de MassasRESUMO
The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3-FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat but could enhance the leaf size and photosynthetic function of flag leaves, increase the accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.