Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.714
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(3): 980-990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088435

RESUMO

Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.


Assuntos
Compostos de Amônio , Compostos de Amônio/metabolismo , Alcaligenes/genética , Alcaligenes/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Águas Residuárias , Nitrogênio/metabolismo , Desnitrificação , Oxirredução , Reatores Biológicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38885035

RESUMO

A novel Gram-stain-negative strain, designated JM10B15T, was isolated from pond water for Litopenaeus vannamei collected from Jiangmen City, Guangdong province, south PR China. Cells of the strain were aerobic, rod-shaped, and motile by lateral flagella. JM10B15T could grow at 15-40 °C, pH 6.0-9.5, and in 0-3.0 % NaCl, with optimal growth at 25-35 °C, pH 7.5-8.5, and in 0 % NaCl, respectively. Furthermore, this strain grew well on Reasoner's 2A agar but not on nutrient broth agar or Luria-Bertani agar. JM10B15T was a denitrifying bacterium capable of removing nitrites and nitrates, and three key functional genes, nasA, nirS, and nosZ, were identified in its genome. The results of phylogenetic analyses based on the 16S rRNA gene and genome sequences indicated that JM10B15T belonged to the genus Gemmobacter. JM10B15T showed the highest 16S rRNA sequence similarity to Gemmobacter lutimaris YJ-T1-11T (98.8 %), followed by Gemmobacter aquatilis IFAM 1031T (98.6 %) and Gemmobacter serpentinus HB-1T (98.1 %). The average nucleotide identity and digital DNA-DNA hybridization values between JM10B15T and the other type strains of genus Gemmobacter were 78.1-82.1 % and 18.4-22.1 %, respectively. The major fatty acids of strain JM10B15T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) and C18 : 1 ω7c 11-methyl. In addition, the major respiratory quinone of this novel strain was Q-10, and the predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, four unidentified phospholipids, three unidentified lipids, and an unidentified aminophospholipid. Results of analyses of the phylogenetic, genomic, physiological, and biochemical characteristics indicated that JM10B15T represents a novel species of the genus Gemmobacter, for which the name Gemmobacter denitrificans sp. nov. is proposed. The type strain is JM10B15T (=GDMCC 1.4148T=KCTC 8140T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Desnitrificação , Ácidos Graxos , Hibridização de Ácido Nucleico , Penaeidae , Filogenia , Lagoas , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Lagoas/microbiologia , DNA Bacteriano/genética , China , Animais , Penaeidae/microbiologia , Fosfolipídeos , Microbiologia da Água , Nitratos/metabolismo , Ubiquinona , Nitritos/metabolismo
3.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463002

RESUMO

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Bactérias/metabolismo , Biomassa
4.
Environ Sci Technol ; 58(6): 2870-2880, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38181504

RESUMO

Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.03-0.1 mM HNQ effectively reduced the concentrations of DON in the effluent (ANOVA, p < 0.05) by up to 63% reduction of effluent DON with a dosing of 0.1 mM HNQ when compared to the control bioreactors. Notably, an algal bioassay indicated that DON played a dominant role in stimulating phytoplankton growth, thus effluent eutrophication potential in bioreactors using 0.1 mM HNQ dramatically decreased compared to that in control bioreactors. The microbe-DON correlation analysis showed that HNQ dosing modified the microbial community composition to both weaken the production and promote the uptake of labile DON, thus minimizing the effluent DON concentration. The toxic assessment demonstrated the ecological safety of the effluent from the bioreactors using the strategy of HNQ addition. Overall, HNQ is a promising redox mediator to reduce the effluent DON concentration with the purpose of meeting low effluent total nitrogen levels and remarkably minimizing effluent eutrophication effects.


Assuntos
Naftoquinonas , Eliminação de Resíduos Líquidos , Águas Residuárias , Matéria Orgânica Dissolvida , Nitrogênio/análise , Eutrofização
5.
Environ Sci Technol ; 58(23): 10140-10148, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38781353

RESUMO

Anammox bacteria performed the reaction of NH4+ and NO with hydrazine synthase to produce N2H4, followed by the decomposition of N2H4 with hydrazine dehydrogenase to generate N2. Ferroheme/ferriheme, which serves as the active center of both hydrazine synthase and hydrazine dehydrogenase, is thought to play a crucial role in the synthesis and decomposition of N2H4 during Anammox due to its high redox activity. However, this has yet to be proven and the exact mechanisms by which ferroheme/ferriheme is involved in the Anammox process remain unclear. In this study, abiotic and biological assays confirmed that ferroheme participated in NH4+ and NO reactions to generate N2H4 and ferriheme, and the produced N2H4 reacted with ferriheme to generate N2 and ferroheme. In other words, the ferroheme/ferriheme cycle drove the continuous reaction between NH4+ and NO. Raman, ultraviolet-visible spectroscopy, and X-ray absorption fine structure spectroscopy confirmed that ferroheme/ferriheme is involved in the synthesis and decomposition of N2H4 via the core FeII/FeIII cycle. The mechanism of ferroheme/ferriheme participation in the synthesis and decomposition of N2H4 was proposed by density functional theory calculations. These findings revealed for the first time the heme electron transfer mechanisms, which are of great significance for deepening the understanding of Anammox.


Assuntos
Hidrazinas , Oxirredução , Hidrazinas/química
6.
Environ Sci Technol ; 58(5): 2335-2345, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271692

RESUMO

Continuous flow processes for the in situ determination of N2O emissions during low C/N municipal wastewater treatment have rarely been reported. The anaerobic/aerobic/anoxic (AOA) process has recently shown promising potential in energy savings and advanced nitrogen removal, but it still needs to be comprehensively explored in relation to N2O emissions for its carbon reduction advantages. In this study, a novel gas-collecting continuous flow reactor was designed to comprehensively evaluate the emissions of N2O from the gas and liquid phases of the AOA process. Additionally, the measures of enhancing endogenous denitrification (ED) and self-enriching anaerobic ammonium oxidation (Anammox) were employed to optimize nitrogen removal and achieve N2O reduction in the anoxic zone. The results showed that enhanced ED coupled with Anammox led to an increase in the nitrogen removal efficiency (NRE) from 67.65 to 81.96%, an enhancement of the NO3- removal rate from 1.76 mgN/(L h) to 3.99 mgN/(L h), and the N2O emission factor in the anoxic zone decreased from 0.28 to 0.06%. Impressively, ED eliminated 91.46 ± 2.47% of the dissolved N2O from the upstream aerobic zone, and the dissolved N2O in the effluent was reduced to less than 0.01 mg/L. This study provides valuable strategies for fully evaluating N2O emissions and N2O reduction from the AOA process.


Assuntos
Desnitrificação , Águas Residuárias , Nitrogênio/análise , Reatores Biológicos , Carbono , Oxirredução , Esgotos , Nitrificação
7.
Environ Sci Technol ; 58(1): 534-544, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108291

RESUMO

A symbiotic microalgal-bacterial biofilm can enable efficient carbon (C) and nitrogen (N) removal during aeration-free wastewater treatment. However, the contributions of microalgae and bacteria to C and N removal remain unexplored. Here, we developed a baffled oxygenic microalgal-bacterial biofilm reactor (MBBfR) for the nonaerated treatment of greywater. A hydraulic retention time (HRT) of 6 h gave the highest biomass concentration and biofilm thickness as well as the maximum removal of chemical oxygen demand (94.8%), linear alkylbenzenesulfonates (LAS, 99.7%), and total nitrogen (97.4%). An HRT of 4 h caused a decline in all of the performance metrics due to LAS biotoxicity. Most of C (92.6%) and N (95.7%) removals were ultimately associated with newly synthesized biomass, with only minor fractions transformed into CO2 (2.2%) and N2 (1.7%) on the function of multifarious-related enzymes in the symbiotic biofilm. Specifically, microalgae photosynthesis contributed to the removal of C and N at 75.3 and 79.0%, respectively, which accounted for 17.3% (C) and 16.7% (N) by bacteria assimilation. Oxygen produced by microalgae favored the efficient organics mineralization and CO2 supply by bacteria. The symbiotic biofilm system achieved stable and efficient removal of C and N during greywater treatment, thus providing a novel technology to achieve low-energy-input wastewater treatment, reuse, and resource recovery.


Assuntos
Microalgas , Águas Residuárias , Eliminação de Resíduos Líquidos , Microalgas/metabolismo , Oxigênio , Dióxido de Carbono , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Biofilmes , Nitrogênio/análise , Nitrogênio/metabolismo , Biomassa , Redes e Vias Metabólicas
8.
Environ Res ; 259: 119541, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960353

RESUMO

Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.

9.
Environ Res ; 244: 117876, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072101

RESUMO

After waste separation program was launched in China in 2019, incineration leachate treatment plants are facing a challenge of effective removal of nitrogen from leachate due to lack of sufficient carbon source. In this study, the performance of a biological incineration leachate treatment process (anaerobic digestion (AD) - two-stage anoxic/aerobic (A/O) process) was evaluated after adopting the waste separation program, and the changes in the microbial community and function was analyzed using 16S rRNA amplicon sequencing technology. Results showed that after the waste separation, the influent chemical oxygen demand (COD) concentration reduced by 90% (from 19,300 to 1780 mg L-1) with the COD/N ratio decreased from 12.3 to 1.4, which led to a decreased nitrogen removal efficiency (NRE) of <65% and a high effluent NO3- accumulation (445.8-986.5 mg N·L-1). By bypassing approximately 60% of the influent to the two-stage A/O process and adding external carbon source (glucose), the mean NRE increased to 86.3 ± 7.4%. Spearman's analysis revealed that refractory compounds in the bypassed leachate were closely related to the variations in bacterial community composition and nitrogen removal function in the two-stage A/O, leading to a weakened correlation of microbial network. KEGG functional pathway predictions based on Tax4Fun also confirmed that the bypassed leachate induced xenobiotic compounds to the two-stage A/O process, the relative abundance of nitrogen metabolism was reduced by 32%, and more external carbon source was required to ensure the satisfactory nitrogen removal of >80%. The findings provide a good guide for regulation of incineration leachate treatment processes after the waste separation.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Nitrogênio , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Incineração , Carbono , Consórcios Microbianos
10.
Environ Res ; 242: 117674, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029814

RESUMO

With a view toward addressing the poor efficiency with which nitrogen is removed from wastewater below 10 °C, in this study, we isolated a novel cold-tolerant heterotrophic nitrification-aerobic denitrification (HN-AD) bacterium from a wetland and characterized its nitrogen removal performance and nitrogen metabolic pathway. On the basis of 16S rRNA gene sequencing, this strain was identified as a species of Janthinobacterium, designated J1-1. At 8 °C, strain J1-1 showed excellent removal efficiencies of 89.18% and 68.18% for single-source NH4+-N and NO3--N, respectively, and removal efficiencies of 96.23% and 79.64% for NH4+-N and NO3--N, respectively, when supplied with mixed-source nitrogen. Whole-genome sequence analysis and successful amplification of the amoA, napA, and nirK functional genes related to nitrogen metabolism provided further evidence in support of the HN-AD capacity of strain J1-1. The deduced HN-AD metabolic pathway of the strain was NH4+-N→NH2OH→NO2--N→NO3--N→NO2--N→NO→N2O. In addition, assessments of NH4+-N removal under different conditions revealed the following conditions to be optimal for efficient removal: a temperature of 20 °C, pH of 7, shaking speed of 150 rpm, sodium succinate as a carbon source, and a C/N mass ratio of 16. Given its efficient nitrogen removal capacity at 8 °C, the J1-1 strain characterized in this study has considerable application potential in the treatment of low-temperature wastewater.


Assuntos
Desnitrificação , Nitrificação , Águas Residuárias , Nitrogênio/metabolismo , RNA Ribossômico 16S , Dióxido de Nitrogênio , Aerobiose , Bactérias/metabolismo , Nitritos/metabolismo
11.
Environ Res ; 244: 117928, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128597

RESUMO

The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 µg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 µg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 µg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 µg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.


Assuntos
4-Butirolactona/análogos & derivados , Percepção de Quorum , Esgotos , Esgotos/microbiologia , Temperatura , Nitrogênio , Desnitrificação
12.
Environ Res ; 248: 118271, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262515

RESUMO

Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.


Assuntos
Antibacterianos , Carvão Vegetal , Microbiota , Humanos , Antibacterianos/farmacologia , Sulfametoxazol , Ferro , Genes Bacterianos , Tetraciclina/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias
13.
Environ Res ; : 119637, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032620

RESUMO

Low-intensity ultrasound, as a form of biological enhancement technology, holds significant importance in the field of biological nitrogen removal. This study utilized low-intensity ultrasound (200 W, 6 min) to enhance partial nitrification and investigated its impact on sludge structure, as well as the internal relationship between structure and properties. The results demonstrated that ultrasound induced a higher concentration of nitrite in the effluent (40.16>24.48 mg/L), accompanied by a 67.76% increase in the activity of ammonia monooxygenase (AMO) and a 41.12% increase in the activity of hydroxylamine oxidoreductase (HAO), benefiting the partial nitrification. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theoretical analysis, ultrasonic treatment enhanced the electrostatic interaction energy (WR) between sludge flocs, raising the total interaction energy from 46.26 kT to 185.54 kT, thereby causing sludge dispersion. This structural alteration was primarily attributed to the fact that the tightly bonded extracellular polymer (TB-EPS) after ultrasound was found to increase hydrophilicity and negative charge, weakening the adsorption between sludge cells. In summary, this study elucidated that the change in sludge structure caused by ultrasonic treatment has the potential to enhance the nitrogen removal performance by partial nitrification.

14.
Biodegradation ; 35(5): 621-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619793

RESUMO

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.


Assuntos
Bactérias , Reatores Biológicos , Desnitrificação , Nitrificação , Esgotos , Cinética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Compostos Ferrosos/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Proteobactérias/metabolismo
15.
Bioprocess Biosyst Eng ; 47(6): 851-862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676738

RESUMO

In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrogênio , Nitrogênio/química , Nitrogênio/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Águas Residuárias/microbiologia , Águas Residuárias/química , Nanopartículas de Magnetita/química
16.
J Environ Manage ; 353: 120158, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271883

RESUMO

Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.


Assuntos
Nitrogênio , Esgotos , Oxirredução , Nitrogênio/análise , Desnitrificação , Reatores Biológicos/microbiologia
17.
J Environ Manage ; 354: 120322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350279

RESUMO

The effects of different current intensities and voltage levels on nutrient removal performance and microbial community evolution in a Bio-Electrical Anammox (BEA) membrane bioreactor (MBR) were evaluated. The nitrogen removal efficiency increased with the current intensity within the range of 64-83 mA, but this improvement was limited at the current further increased. The phosphorus removal in the BEA MBR was attributed to the release of Fe2+, which was closely associated with the applied current to the electrodes. Heme c concentration, enzyme activities, and specific anammox activity exhibited a decreasing trend, while the functional denitrification genes showed a positive correlation with rising voltage. The nitrogen removal efficiency of the BEA system initially increased and then decreased with the voltage rose from 1.5V to 3.5V, peaking at 2.0V of 94.02% ± 1.19%. Transmission electron microscopy and flow cytometry results indicated that accelerated cell apoptosis/lysis led to an irreversible collapse of the biological nitrogen removal system at 3.5V. Candidatus Brocadia was the predominant anammox bacteria in the BEA system. In contrast, closely related Candidatus Kuenenia and Chloroflexi bacteria were gradually eliminated in electrolytic environment. The abundances of Proteobacteria-affiliated denitrifiers were increased with the voltage rising since the organic matter released by the cell apoptosis/lysis was accelerated at a high voltage level.


Assuntos
Oxidação Anaeróbia da Amônia , Microbiota , Desnitrificação , Oxirredução , Bactérias/genética , Reatores Biológicos/microbiologia , Nitrogênio
18.
J Environ Manage ; 364: 121448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870797

RESUMO

Submerged zone in bioretention facilities for stormwater treatment has been approved to be an effective structure amendment to improve denitrification capability. However, the role and influence of water quality changes in the submerged zone under natural continuous random rainfall patterns are still not clear, especially when the rainfall is less than the pore water in the submerged zone. In this study, continuous rainfall events with different rainfall volume (light rain-light rain-heavy rain) were designed in a lab-scale woodchip mulched pyrite bioretention facility to test the effects of rainfall pattern. The results exhibited that light rain events significantly affected the pollutant removal performance of bioretention for the next rainfall. Different effects were observed during the long-term operation. In the 5th month, light rain reduced the ammonia removal efficiency of subsequent rainstorm events by 8.70%, while in the 12th month, when nitrate leakage occurred, light rain led to a 40.24% reduction in the next heavy rain event's nitrate removal efficiency. Additionally, light rain would also affect the concentration of by-products in the next rainfall. Following a light rain, the concentration of sulfate in the subsequent light rainfall can increase by 24.4 mg/L, and by 11.92 mg/L in a heavy rain. The water quality in the submerged zone and media characteristics analysis suggested that nitrogen conversion capacity of the substrate and microbes, such as Nitrospira (2.86%) and Thiobacillus (35.71%), as well as the in-situ accumulation of pollutants under light rain played important roles. This study clarifies the relationship between successive rainfall events and provides a more comprehensive understanding of bioretention facilities. This is beneficial for field study of bioretention facilities in the face of complex rainfall events.


Assuntos
Chuva , Nitratos/análise , Desnitrificação , Nitrogênio/análise , Amônia/análise , Poluentes Químicos da Água/análise , Qualidade da Água
19.
J Environ Manage ; 362: 121305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830287

RESUMO

The use of microalgae and bacteria as a strategy for the startup of bioreactors for the treatment of industrial wastewater can be a sustainable and economically viable alternative. This technology model provides satisfactory results in the nitrification and denitrification process for nitrogen removal, organic matter removal, biomass growth, sedimentation, and byproducts recovery for added-value product production. The objective of this work was to evaluate the performance of microalgae and bacteria in their symbiotic process when used in the treatment of paper pulp industry wastewater. The experiment, lasting fourteen days, utilized four bioreactors with varying concentrations in mgVSS/L of microalgae to bacteria ratio (R1-100:100, R2-100:300, R3-100:500, R4-300:100) in the startup process. Regarding the sludge volumetric index (SVI), the results show that the R1 and R2 reactors developed SVI30/SVI10 biomass in the range of 85.57 ± 7.33% and 84.72 ± 8.19%, respectively. The lipid content in the biomass of reactors R1, R2, R3 e R4 was 13%, 7%, 19%, and 22%, respectively. This high oil content at the end of the batch, may be related to the nutritional stress that the species underwent during this feeding regime. In terms of chlorophyll, the bioreactor with an initial inoculation of 100:100 showed better symbiotic growth of microalgae and bacteria, allowing exponential growth of microalgae. The total chlorophyll value for this bioreactor was 801.46 ± 196.96 µg/L. Biological removal of nitrogen from wastewater from the paper pulp industry is a challenge due to the characteristics of the effluent, but the four reactors operated in a single batch obtained good nitrogen removal. Ammonia nitrogen removal performances were 91.55 ± 9.99%, 72.13 ± 19.18%, 64.04 ± 21.34%, and 86.15 ± 30.10% in R1, R2, R3, and R4, respectively.


Assuntos
Biocombustíveis , Reatores Biológicos , Microalgas , Águas Residuárias , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Papel , Biomassa , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Nitrificação
20.
J Environ Manage ; 366: 121760, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981264

RESUMO

Industrial wastewater discharged into sewer systems is often characterized by high nitrate contents and low C/N ratios, resulting in high treatment costs when using conventional activated sludge methods. This study introduces a partial denitrification-anammox (PD/A) granular process to address this challenge. The PD/A granular process achieved an effluent TN level of 3.7 mg/L at a low C/N ratio of 2.3. Analysis of a typical cycle showed that the partial denitrification peaked within 15 min and achieved a nitrate-to-nitrite transformation ratio of 86.9%. Anammox, which was activated from 15 to 120 min, contributed 86.2% of the TN removal. The system exhibited rapid recovery from post-organic shock, which was attributed to significant increases in protein content within TB-EPS. Microbial dispersion and reassembly were observed after coexistence of the granules, with Thauera (39.12%) and Candidatus Brocadia (1.25%) identified as key functional microorganisms. This study underscores the efficacy of PD/A granular sludge technology for treating low-C/N nitrate wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA