Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(12): 5583-5595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272523

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) is common in patients with cognitive impairment and neurodegenerative diseases such as Alzheimer's and Parkinson's. This study investigated the burden of magnetic resonance imaging (MRI)-based markers of SVD in patients with neurodegenerative diseases as a function of rare genetic variant carrier status. METHODS: The Ontario Neurodegenerative Disease Research Initiative study included 520 participants, recruited from 14 tertiary care centers, diagnosed with various neurodegenerative diseases and determined the carrier status of rare non-synonymous variants in five genes (ABCC6, COL4A1/COL4A2, NOTCH3/HTRA1). RESULTS: NOTCH3/HTRA1 were found to significantly influence SVD neuroimaging outcomes; however, the mechanisms by which these variants contribute to disease progression or worsen clinical correlates are not yet understood. DISCUSSION: Further studies are needed to develop genetic and imaging neurovascular markers to enhance our understanding of their potential contribution to neurodegenerative diseases.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética
2.
Mov Disord ; 37(6): 1304-1309, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403259

RESUMO

BACKGROUND: Although previously thought to be asymptomatic, recent studies have suggested that magnetic resonance imaging-visible perivascular spaces (PVS) in the basal ganglia (BG-PVS) of patients with Parkinson's disease (PD) may be markers of motor disability and cognitive decline. In addition, a pathogenic and risk profile difference between small (≤3-mm diameter) and large (>3-mm diameter) PVS has been suggested. OBJECTIVE: The aim of this study was to examine associations between quantitative measures of large and small BG-PVS, global cognition, and motor/nonmotor features in a multicenter cohort of patients with PD. METHODS: We performed a cross-sectional study examining the association between large and small BG-PVS with Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Parts I-IV and cognition (Montreal Cognitive Assessment) in 133 patients with PD enrolled in the Ontario Neurodegenerative Disease Research Initiative study. RESULTS: Patients with PD with small BG-PVS demonstrated an association with MDS-UPDRS Parts I (P = 0.008) and II (both P = 0.02), whereas patients with large BG-PVS demonstrated an association with MDS-UPDRS Parts III (P < 0.0001) and IV (P < 0.001). BG-PVS were not correlated with cognition. CONCLUSIONS: Small BG-PVS are associated with motor and nonmotor aspects of experiences in daily living, while large BG-PVS are associated with the motor symptoms and motor complications. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Doenças Neurodegenerativas , Doença de Parkinson , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/complicações
3.
Mov Disord ; 35(11): 2090-2095, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32573853

RESUMO

BACKGROUND: White matter hyperintensities (WMH) on magnetic resonance imaging may influence clinical presentation in patients with Parkinson's disease (PD), although their significance and pathophysiological origins remain unresolved. Studies examining WMH have identified pathogenic variants in NOTCH3 as an underlying cause of inherited forms of cerebral small vessel disease. METHODS: We examined NOTCH3 variants, WMH volumes, and clinical correlates in 139 PD patients in the Ontario Neurodegenerative Disease Research Initiative cohort. RESULTS: We identified 13 PD patients (~9%) with rare (<1% of general population), nonsynonymous NOTCH3 variants. Bayesian linear modeling demonstrated a doubling of WMH between variant negative and positive patients (3.1 vs. 6.9 mL), with large effect sizes for periventricular WMH (d = 0.8) and lacunes (d = 1.2). Negative correlations were observed between WMH and global cognition (r = -0.2). CONCLUSION: The NOTCH3 rare variants in PD may significantly contribute to increased WMH burden, which in turn may negatively influence cognition. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Substância Branca , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Ontário , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Receptor Notch3/genética , Substância Branca/diagnóstico por imagem
4.
Front Neurosci ; 14: 598868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381009

RESUMO

BACKGROUND: Regional changes to cortical thickness in individuals with neurodegenerative and cerebrovascular diseases (CVD) can be estimated using specialized neuroimaging software. However, the presence of cerebral small vessel disease, focal atrophy, and cortico-subcortical stroke lesions, pose significant challenges that increase the likelihood of misclassification errors and segmentation failures. PURPOSE: The main goal of this study was to examine a correction procedure developed for enhancing FreeSurfer's (FS's) cortical thickness estimation tool, particularly when applied to the most challenging MRI obtained from participants with chronic stroke and CVD, with varying degrees of neurovascular lesions and brain atrophy. METHODS: In 155 CVD participants enrolled in the Ontario Neurodegenerative Disease Research Initiative (ONDRI), FS outputs were compared between a fully automated, unmodified procedure and a corrected procedure that accounted for potential sources of error due to atrophy and neurovascular lesions. Quality control (QC) measures were obtained from both procedures. Association between cortical thickness and global cognitive status as assessed by the Montreal Cognitive Assessment (MoCA) score was also investigated from both procedures. RESULTS: Corrected procedures increased "Acceptable" QC ratings from 18 to 76% for the cortical ribbon and from 38 to 92% for tissue segmentation. Corrected procedures reduced "Fail" ratings from 11 to 0% for the cortical ribbon and 62 to 8% for tissue segmentation. FS-based segmentation of T1-weighted white matter hypointensities were significantly greater in the corrected procedure (5.8 mL vs. 15.9 mL, p < 0.001). The unmodified procedure yielded no significant associations with global cognitive status, whereas the corrected procedure yielded positive associations between MoCA total score and clusters of cortical thickness in the left superior parietal (p = 0.018) and left insula (p = 0.04) regions. Further analyses with the corrected cortical thickness results and MoCA subscores showed a positive association between left superior parietal cortical thickness and Attention (p < 0.001). CONCLUSION: These findings suggest that correction procedures which account for brain atrophy and neurovascular lesions can significantly improve FS's segmentation results and reduce failure rates, thus maximizing power by preventing the loss of our important study participants. Future work will examine relationships between cortical thickness, cerebral small vessel disease, and cognitive dysfunction due to neurodegenerative disease in the ONDRI study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA