Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2217396120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068235

RESUMO

Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.


Assuntos
Octopamina , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Astrócitos/metabolismo , Calcineurina/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Neuroproteção , Neurotransmissores/metabolismo , Octopamina/metabolismo
2.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38937100

RESUMO

To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct ß 1R, Oct ß 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octß1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.


Assuntos
Proteínas de Drosophila , Drosophila , Epitopos , Corpos Pedunculados , Receptores Acoplados a Proteínas G , Animais , Feminino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Corpos Pedunculados/metabolismo , Animais Geneticamente Modificados , Encéfalo/metabolismo
3.
J Neurosci ; 43(7): 1111-1124, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604172

RESUMO

Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Animais , Caenorhabditis elegans/fisiologia , Acetilcolina , Ligantes , Colinérgicos , Colina
4.
J Chem Ecol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888642

RESUMO

Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.

5.
Exp Parasitol ; 261: 108763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704016

RESUMO

The brown dog tick or Rhipicephalus sanguineus sensu lato is an ixodid tick, responsible for the dissemination of pathogens that cause canine infectious diseases besides inflicting the direct effects of tick bite. The hot humid climate of Kerala, a south Indian state, is favorable for propagation of tick vectors and acaricides are the main stay of tick control. Though the resistance against synthetic pyrethroids is reported among these species, the status of amitraz resistance in R. sanguineus s. l. in the country is uncertain due to the lack of molecular characterisation data and scarce literature reports. Hence the present study was focused on the phenotypic detection and preliminary genotypic characterisation of amitraz resistance in the R. sanguineus s. l. A modified larval packet test (LPT) on a susceptible isolate was performed to determine the discriminating dose (DD). Further LPT-DD on 35 tick isolates was carried out to detect amitraz resistance robustly, along with that full dose response bioassays on the resistant isolates were performed. The results indicated that amitraz resistance is prevalent with 49 per cent of the samples being resistant. Amplification of exon 3 of octopamine receptor gene from both the susceptible and resistant larval isolates was carried out. Amplicons of ten pooled amitraz susceptible and ten pooled amitraz resistant representative samples were sequenced and analysed, unveiling a total of three novel non-synonymous mutations in the partial coding region at positions V32A, N41D and V58I in phenotypically resistant larval DNA samples. In silico analysis by homology modelling and molecular docking of the mutated and unmutated receptors showed that these mutations had reduced the binding affinity to amitraz. However, lack of mutations in the octopamine receptor gene in three of the pooled low order resistant R. sanguineus s. l. larval samples could be suggestive of other mechanisms associated with amitraz resistance in the region. Hence, further association studies should be carried out to confirm the association of these mutations with target insensitivity in R. sanguineus s. l. ticks, along with exploring the status of metabolic resistance and other mechanisms of resistance.


Assuntos
Acaricidas , Receptores de Amina Biogênica , Rhipicephalus sanguineus , Toluidinas , Animais , Toluidinas/farmacologia , Receptores de Amina Biogênica/genética , Índia , Rhipicephalus sanguineus/genética , Rhipicephalus sanguineus/efeitos dos fármacos , Acaricidas/farmacologia , Larva/genética , Larva/efeitos dos fármacos , Resistência a Inseticidas/genética , Polimorfismo Genético , Genótipo , Cães , Feminino , Doenças do Cão/parasitologia , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Bioensaio
6.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582589

RESUMO

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Assuntos
Dopamina , Drosophila melanogaster , Tephritidae , Animais , Dopamina/metabolismo , Dopamina/farmacologia , Drosophila melanogaster/metabolismo , Memória , Antagonistas de Dopamina/farmacologia
7.
Neurobiol Learn Mem ; 203: 107778, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257558

RESUMO

Aminergic neurons mediate reward signals in mammals and insects. In crickets, we showed that blockade of synaptic transmission from octopamine neurons (OANs) impairs conditioning of an odor (conditioned stimulus, CS) with water or sucrose (unconditioned stimulus, US) and execution of a conditioned response (CR) to the CS. It has not yet been established, however, whether findings in crickets can be applied to other species of insects. In this study, we investigated the roles of OANs in conditioning of salivation, monitored by activities of salivary neurons, and in execution of the CR in cockroaches (Periplaneta americana). We showed that injection of epinastine (an OA receptor antagonist) into the head hemolymph impaired both conditioning and execution of the CR, in accordance with findings in crickets. Moreover, local injection of epinastine into the vertical lobes of the mushroom body (MB), the center for associative learning and control of the CR, impaired execution of the CR, whereas injection of epinastine into the calyces of the MB or the antennal lobes (primary olfactory centers) did not. We propose that OANs in the MB vertical lobes play critical roles in the execution of the CR in cockroaches. This is analogous to the fact that midbrain dopamine neurons govern execution of learned actions in mammals.


Assuntos
Baratas , Animais , Octopamina , Corpos Pedunculados , Neurônios Dopaminérgicos/fisiologia , Mamíferos
8.
Artigo em Inglês | MEDLINE | ID: mdl-36930349

RESUMO

Visual-orientation learning of a tethered flying bee was investigated using a flight simulator and a novel protocol in which orientation preference toward trained visual targets was assessed in tests performed before and after appetitive conditioning. Either a blue or a green rectangle (conditioned stimulus, CS) was associated with 30% sucrose solution (unconditioned stimulus, US), whereas the other rectangle was not paired with US. Bees were tested in a closed-looped flight simulator 5 min after ten pairings of the US and CS. Conditioned bees were preferentially oriented to the CS after such training. This increase in preference for CS was maintained for 24 h, indicating the presence of long-term memory. Because the total orienting time was not altered by conditioning, conditioning did not enhance orientation activity itself but increased the relative time for orientation to CS. When 0.4 or 4 mM epinastine (an antagonist of octopamine receptors) was injected into the bee's head 30 min prior to the experiment, both short- and long-term memory formation were significantly impaired, suggesting that octopamine, which is crucial for appetitive olfactory learning in insects, is also involved in visual orientation learning.


Assuntos
Condicionamento Clássico , Condicionamento Operante , Abelhas , Animais
9.
Fish Shellfish Immunol ; 142: 109096, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758094

RESUMO

Stress responses impact the immune systems, growth, and reproduction of aquatic organisms. Neuroendocrine regulation involving biogenic amines, including octopamine (OA), plays a pivotal role in maintaining physiological balance during stress. This study focuses on the synthesis pathway of OA, particularly the role of tyramine beta hydroxylase (TBH), in Litopenaeus vannamei under stress. TBH catalyzes the conversion of tyramine to OA, a process critical for physiological responses. The present study demonstrated LvTBH at the protein level under different stress conditions during acute (0.5, 1, 2 h) and chronic stress (24, 72, 168 h) periods. LvTBH increased in thoracic ganglia within 2 h under hyperthermal stress, accompanied by elevated OA levels. Conversely, LvTBH decreased in the brain and circumesophageal connective tissues during acute and chronic hypothermal stress. Additionally, LvTBH increased in the brain and circumesophageal connective tissues under acute infection stress, coinciding with elevated OA levels. These findings collectively contribute to a more intricate understanding of the neuroendocrine dynamics within L. vannamei under stress, underscoring the role of TBH in orchestrating responses crucial for adaptation.


Assuntos
Octopamina , Penaeidae , Animais , Octopamina/metabolismo , Vibrio alginolyticus/fisiologia , Salinidade , Oxigenases de Função Mista , Tiramina
10.
Pestic Biochem Physiol ; 194: 105509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532362

RESUMO

As an important biogenic amine in invertebrates and corresponding to the neurotransmitter norepinephrine in vertebrates, octopamine (OA) regulates diverse physiological and behavioral processes by binding to specific octopamine receptors (OARs) in invertebrates. At present, OARs have been identified and characterized in several insects. However, less is known about the OARs of Laodelphax striatellus, one of the most destructive pests in East Asian rice fields. In the present study, an α1-adrenergic-like OAR (LsOA1) from L. striatellus was cloned. LsOA1 has the typical characteristics of G-protein coupled receptors and is clustered with other insect homologs. The transcript level of LsOA1 varied in various stages and tissues, and was highly expressed at the egg stage and in the brain. Silencing of LsOA1 causes a reduction in vitellogenin (LsVg) and vitellogenin receptor (LsVgR) expression. Although LsOA1 interference did not affect the fecundity and survival of L. striatellus, the hatching rate of L. striatellus was significantly reduced, and the hatching period was prolonged. The decrease in the amount of honeydew excreted after silencing LsOA1 indicates that LsOA1 may be involved in regulating the feeding behavior of L. striatellus. In addition, the interference of LsOA1 significantly reduced the expression of capsid protein (CP) and viral RNA3 segment (RNA3) in rice stripe virus (RSV)-viruliferous L. striatellus, but did not affect the vertical transmission rate of RSV. The present study demonstrated that LsOA1 played a crucial role in the physiological and behavioral processes of L. striatellus, which will provide the basis for developing a new target gene for pest control.


Assuntos
Hemípteros , Oryza , Receptores de Amina Biogênica , Tenuivirus , Animais , Adrenérgicos/metabolismo , Hemípteros/fisiologia , Insetos , Receptores de Amina Biogênica/genética , Tenuivirus/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834262

RESUMO

Solenopsis geminata is recognized for containing the allergenic proteins Sol g 1, 2, 3, and 4 in its venom. Remarkably, Sol g 2.1 exhibits hydrophobic binding and has a high sequence identity (83.05%) with Sol i 2 from S. invicta. Notably, Sol g 2.1 acts as a mediator, causing paralysis in crickets. Given its structural resemblance and biological function, Sol g 2.1 may play a key role in transporting hydrophobic potent compounds, which induce paralysis by releasing the compounds through the insect's nervous system. To investigate this further, we constructed and characterized the recombinant Sol g 2.1 protein (rSol g 2.1), identified with LC-MS/MS. Circular dichroism spectroscopy was performed to reveal the structural features of the rSol g 2.1 protein. Furthermore, after treating crickets with S. geminata venom, immunofluorescence and immunoblotting results revealed that the Sol g 2.1 protein primarily localizes to the neuronal cell membrane of the brain and thoracic ganglia, with distribution areas related to octopaminergic neuron cell patterns. Based on protein-protein interaction predictions, we found that the Sol g 2.1 protein can interact with octopamine receptors (OctRs) in neuronal cell membranes, potentially mediating Sol g 2.1's localization within cricket central nervous systems. Here, we suggest that Sol g 2.1 may enhance paralysis in crickets by acting as carriers of active molecules and releasing them onto target cells through pH gradients. Future research should explore the binding properties of Sol g 2.1 with ligands, considering its potential as a transporter for active molecules targeting pest nervous systems, offering innovative pest control prospects.


Assuntos
Venenos de Formiga , Formigas , Críquete , Animais , Venenos de Formiga/química , Venenos de Formiga/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Formigas/química , Peçonhas , Proteínas de Ligação ao GTP/metabolismo , Proteínas Recombinantes/metabolismo , Sistema Nervoso Central/metabolismo , Paralisia
12.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049663

RESUMO

Dopamine, adrenaline and octopamine are small polar molecules that play a vital role in regulatory systems. In this paper, phthalylglycyl chloride was proposed as a derivatization agent for octopamine, adrenaline and dopamine determination in urine for the first time. The derivatization procedure facilitated the use of reversed-phase liquid chromatography with positive electrospray ionization-high-resolution mass spectrometry. An LC-HRMS method was developed that provided quantification limits of 5 ng/mL and detection limits of 1.5 ng/mL for all analytes. The 95-97% yield of derivates was observed after a 10 min derivatization with phthalylglycyl chloride at pH 6.5 and 30 °C. The proposed method was successfully applied to the analysis of human urine samples. The obtained results were compared with those of conventional derivatization procedures with 9-fluorenyl-methoxycarbonyl chloride and dansyl chloride.


Assuntos
Dopamina , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Epinefrina , Cromatografia Líquida de Alta Pressão/métodos , Cloretos , Octopamina
13.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202658

RESUMO

Screening and identifying the active compounds in foods are important for the development and utilization of functional foods. In this study, the anti-enteritis activity of ethanol extract from Camellia oleifera oil (PECS) was quickly evaluated using a Smurf Drosophila model and the metabolomics approach, combined with molecular docking techniques, were performed to rapidly screen and identify compounds with potential anti-enteritis activity in PECS. PECS showed good anti-enteritis activity and inhibited the activity of 5-lipoxygenase (LOX), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). In particular, wighteone and p-octopamine were newly identified in C. oleifera oil and were proven to have good anti-enteritis activity. The inhibitory activity of kaempferitrin (IC50 = 0.365 mmol L-1) was higher than that of wighteone (IC50 = 0.424 mmol L-1) and p-octopamine (IC50 = 0.402 mmol L-1). Of note, the IC50 value of salazosulfapyridine was 0.810 mmol L-1. Inhibition of LOX activity is likely one of the anti-enteritis mechanisms of PECS. These new findings lay the foundation for further investigations into the underlying mechanisms of anti-enteritis activity in C. oleifera oil.


Assuntos
Camellia , Enterite , Animais , Drosophila , Simulação de Acoplamento Molecular , Octopamina , Alimento Funcional , Fenóis/farmacologia , Óleos de Plantas/farmacologia
14.
Insect Mol Biol ; 31(4): 471-481, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312201

RESUMO

Insect octopamine (OA) receptors are G-protein coupled receptors (GPCRs) that play essential roles in physiological and behavioural processes. However, there is little information about the function of OA receptors in the aphids' response to stress. From the genome sequence of Rhopalosiphum padi genome sequence, a cosmopolitan cereal pest, we identified six OA receptor genes RpOAMB, RpOctR, RpOctß1R, RpOctß2R, RpOctß3R, RpOctR-like with two, one, one, four, four, seven exons, respectively. All the OA receptors contain seven transmembrane domains, which were the signature of GPCRs. Our results showed that (1) the contents of OA increased significantly after food starvation, (2) the transcription levels of RpOAMB, RpOctR, RpOctß2R and RpOctß3R increased after starvation and were restored after re-feeding, and (3) the expression levels of these four genes decreased significantly 48 h post-injection of dsRNA that targeted the respective genes. Knockdown of RpOctR, RpOctß2R or RpOctß3R genes significantly increased aphid mortality under 24 h starvation conditions. Mortality of R. padi injected with dsRpOctR or dsRpOctß2R was significantly higher than control under 48 h starvation treatments. This is the first report on the role of OA receptors in the starvation response of aphids. The current study provides knowledge for a better understanding the physiological roles of insect OA receptors.


Assuntos
Afídeos , Animais , Afídeos/genética , Receptores de Amina Biogênica
15.
Insect Mol Biol ; 31(5): 647-658, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35652818

RESUMO

The biosynthesis and termination of insect sex pheromones should be accurately regulated. In most moths, the biosynthesis and release of sex pheromones are regulated by a class of neuropeptides known as pheromone biosynthesis activating neuropeptides (PBANs). However, endogenous mechanisms underlying the termination of sex pheromone biosynthesis in moths remain elusive. In the present study, Helicoverpa armigera was employed as a model to investigate the role of octopamine (OA) in the inhibition of sex pheromone biosynthesis. Results demonstrated that the release of sex pheromones decreased with an increase in OA titres in older female moths. Moreover, OA treatment led to a significant decrease in sex pheromone production, female capability to attract male counterparts and subsequent female acceptance, indicating its inhibitory role in sex pheromone release. Subsequent qPCR and RNAi analyses revealed that OctßR was a key receptor of OA that regulated sex pheromone biosynthesis. In addition, the OA/OctßR signal suppressed intracellular Ca2+ levels and attenuated PBAN-mediated increase in the enzyme activities of calcineurin and acetyl-CoA carboxylase as demonstrated by OA treatment and OctßR-RNAi. Altogether, these results revealed a mechanism underlying the inhibition of sex pheromone production by OA via suppression of PBAN signalling in moths.


Assuntos
Mariposas , Neuropeptídeos , Atrativos Sexuais , Animais , Calcineurina , Feminino , Masculino , Mariposas/genética , Neuropeptídeos/genética , Octopamina
16.
Insect Mol Biol ; 31(1): 33-48, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480382

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål) is a resurgent pest of rice crops throughout Asia. We recently discovered that octopamine (OA) and OA2B2 operate in the BPH mating system, where it mediates a wide range of molecular, physiological and behavioural changes. Here, we report on outcomes of experiments designed to test the hypothesis that OA/OA2B2 signalling mediates responses to three abiotic stressors, starvation, high temperature (37 °C), and induced oxidative stress. We found per os RNAi-mediated OA2B2 silencing led to significantly decreased survival, measured in days, following exposure to each of these stressors. We selected a biologically costly process, reproductive biology, as a biotic stressor. Silencing of OA2B2 led to decreased total protein content in ovaries and fat bodies, downregulated expression of vitellogenin (Vg) and Vg receptor (VgR), inhibited fat body Vg protein synthesis, shortened the oviposition period, prolonged the preoviposition period, reduced the number of laid eggs, body weight and female longevity. In addition, the silencing treatments also led to inhibited ovarian development, and ovarian Vg uptake, reduced numbers of egg masses and offspring and lower hatching rates and population growth index. These data support our hypothesis that OA2B2 acts in mediating BPH resistance to biotic and abiotic stressors.


Assuntos
Hemípteros , Receptores de Amina Biogênica , Animais , Feminino , Hemípteros/metabolismo , Receptores de Amina Biogênica/metabolismo , Reprodução , Vitelogeninas/metabolismo
17.
J Exp Biol ; 225(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673989

RESUMO

Rapid cold hardening (RCH) is a type of phenotypic plasticity that delays the occurrence of chill coma in insects. Chill coma is mediated by a spreading depolarization of neurons and glia in the CNS, triggered by a failure of ion homeostasis. We used biochemical and electrophysiological approaches in the locust, Locusta migratoria, to test the hypothesis that the protection afforded by RCH is mediated by activation of the Na+/K+-ATPase (NKA) in neural tissue. RCH did not affect NKA activity measured in a biochemical assay of homogenized thoracic ganglia. However, RCH hyperpolarized the axon of a visual interneuron (DCMD) and increased the amplitude of an activity-dependent hyperpolarization (ADH) shown previously to be blocked by ouabain. RCH also improved performance of the visual circuitry presynaptic to DCMD to minimize habituation and increase excitability. We conclude that RCH enhances in situ NKA activity in the nervous system but also affects other neuronal properties that promote visual processing in locusts.


Assuntos
Locusta migratoria , Adenosina Trifosfatases , Animais , Axônios , Temperatura Baixa , Coma , Homeostase/fisiologia , Locusta migratoria/fisiologia
18.
J Chem Ecol ; 48(7-8): 628-640, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687218

RESUMO

The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.


Assuntos
Besouros , Octopamina , Animais , Besouros/fisiologia , Feminino , Masculino , Mianserina , Octopamina/farmacologia , Oviposição , Reprodução
19.
Neurol Sci ; 43(11): 6299-6304, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35840874

RESUMO

The pathogenesis of migraine, as well as cluster headache (CH), is yet a debated question. In this review, we discuss the possible role of tyrosine and tryptophan metabolism in the pathogenesis of primary headaches, including the abnormalities in the synthesis of neurotransmitters. High level of dopamine, low level of norepinephrine, and very elevated levels of octopamine and synephrine were found in the plasma of episodic migraine without aura. We hypothesize that the imbalance between the levels of neurotransmitters and elusive amines synthesis is due to a metabolic shift directing tyrosine toward increased decarboxylase and reduced hydroxylase enzyme activities, favored by a state of neuronal hyperexcitability and a reduced mitochondrial activity. In addition, we present biochemical studies performed in chronic migraine (CM) and chronic tension-type headache patients (CTTH) to verify if the same anomalies are present in these primary headaches and, if so, their possible role in the chronicity process of CM and CTTH. The results show that important abnormalities of tyrosine-related metabolites are present only in CM patients while tryptamine plasma levels were found significantly lower in both CM and CTTH patients. Because of this, we propose that migraine and, possibly, CH attacks derive from neurotransmitter and neuromodulator metabolic abnormalities in a hyperexcitable and hypoenergetic brain that spread from the frontal lobe, downstream, resulting in abnormally activated nuclei of the pain matrix. The low tryptamine plasma levels found in CM and CTTH patients suggest that these two primary chronic headaches are characterized by a common insufficient serotoninergic control of the pain threshold.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Cefaleia do Tipo Tensional , Humanos , Aminas , Transtornos de Enxaqueca/metabolismo , Triptaminas , Cefaleia do Tipo Tensional/complicações , Cefaleia/complicações , Tirosina/metabolismo , Neurotransmissores
20.
Proc Natl Acad Sci U S A ; 116(14): 7107-7112, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872487

RESUMO

Feeding is vital for animal survival and is tightly regulated by the endocrine and nervous systems. To study the mechanisms of humoral regulation of feeding behavior, we investigated serotonin (5-HT) and octopamine (OA) signaling in Caenorhabditis elegans, which uses pharyngeal pumping to ingest bacteria into the gut. We reveal that a cross-modulation mechanism between 5-HT and OA, which convey feeding and fasting signals, respectively, mainly functions in regulating the pumping and secretion of both neuromodulators via ADF/RIC/SIA feedforward neurocircuit (consisting of ADF, RIC, and SIA neurons) and ADF/RIC/AWB/ADF feedback neurocircuit (consisting of ADF, RIC, AWB, and ADF neurons) under conditions of food supply and food deprivation, respectively. Food supply stimulates food-sensing ADFs to release more 5-HT, which augments pumping via inhibiting OA secretion by RIC interneurons and, thus, alleviates pumping suppression by OA-activated SIA interneurons/motoneurons. In contrast, nutrient deprivation stimulates RICs to secrete OA, which suppresses pumping via activating SIAs and maintains basal pumping and 5-HT production activity through excitation of ADFs relayed by AWB sensory neurons. Notably, the feedforward and feedback circuits employ distinct modalities of neurosignal integration, namely, disinhibition and disexcitation, respectively.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Octopamina/farmacologia , Serotonina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Privação de Alimentos/fisiologia , Interneurônios/patologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA