Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 107(2): 180-190, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32462291

RESUMO

Microgravity causes both muscle and bone loss. Although we previously revealed that gravity change influences muscle and bone through the vestibular system in mice, its detailed mechanism has not been elucidated. In this study, we investigated the roles of olfactomedin 1 (OLFM1), whose expression was upregulated during hypergravity in the soleus muscle, in mouse bone cells. Vestibular lesion significantly blunted OLFM1 expression in the soleus muscle and serum OLFM1 levels enhanced by hypergravity in mice. Moreover, a phosphatidylinositol 3-kinase inhibitor antagonized shear stress-enhanced OLFM1 expression in C2C12 myotubes. As for the effects of OLFM1 on bone cells, OLFM1 inhibited osteoclast formation from mouse bone marrow cells and mouse preosteoclastic RAW264.7 cells. Moreover, OLFM1 suppressed RANKL expression and nuclear factor-κB signaling in mouse osteoblasts. Serum OLFM1 levels were positively related to OLFM1 mRNA levels in the soleus muscle and trabecular bone mineral density of mice. In conclusion, we first showed that OLFM1 suppresses osteoclast formation and RANKL expression in mouse cells.


Assuntos
Osso e Ossos/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Glicoproteínas/fisiologia , Hipergravidade , Músculo Esquelético/fisiologia , Animais , Diferenciação Celular , Camundongos , Osteoclastos/fisiologia , Ligante RANK/fisiologia
2.
J Neurochem ; 143(6): 635-644, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28975619

RESUMO

The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.


Assuntos
Proteínas da Matriz Extracelular/genética , Glicoproteínas/genética , Transporte Proteico/genética , Receptores de AMPA/metabolismo , Animais , Encéfalo/metabolismo , Técnicas de Inativação de Genes , Peixe-Zebra
3.
J Biol Chem ; 290(24): 15092-101, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25903135

RESUMO

Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the "V" is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal ß-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and ß-propeller combination (Olfm1(coil-Olf)) that reveals a disulfide-linked dimeric arrangement with the ß-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.


Assuntos
Proteínas da Matriz Extracelular/química , Glicoproteínas/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos
4.
Biol Reprod ; 93(5): 109, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377223

RESUMO

Successful embryo implantation requires a synchronized dialogue between a competent blastocyst and the receptive endometrium, which occurs in a limited time period known as the "window of implantation." Recent studies suggested that down-regulation of olfactomedin 1 (OLFM1) in the endometrium and fallopian tube is associated with receptive endometrium and tubal ectopic pregnancy in humans. Interestingly, the human chorionic gonadotropin (hCG) induces miR-212 expression, which modulates OLFM1 and C-terminal binding protein 1 (CTBP1) expressions in mouse granulosa cells. Therefore, we hypothesized that embryo-derived hCG would increase miR-212 expression and down-regulate OLFM1 and CTBP1 expressions to favor embryo attachment onto the female reproductive tract. We found that hCG stimulated the expression of miR-212 and down-regulated OLFM1 but not CTBP1 mRNA in both human endometrial (Ishikawa) and fallopian (OE-E6/E7) epithelial cells. However, hCG suppressed the expression of OLFM1 and CTBP1 proteins in both cell lines. The 3'UTR of both OLFM1 and CTBP1 contained binding sites for miR-212. The miR-212 precursor suppressed luciferase expression, whereas the miR-212 inhibitor stimulated luciferase expression of the wild-type (WT)-OLFM1 and WT-CTBP1 reporter constructs. Furthermore, hCG (25 IU/ml) treatments stimulated trophoblastic (Jeg-3) spheroid (blastocyst surrogate) attachment onto Ishikawa and OE-E6/E7 cells. Transfection of miR-212 precursor increased Jeg-3 spheroid attachment onto Ishikawa cells and decreased OLFM1 and CTBP1 protein expressions, whereas the opposite occurred with miR-212 inhibitor. Taken together, hCG stimulated miR-212, which in turn down-regulated OLFM1 and CTBP1 expression in fallopian and endometrial epithelial cells to favor spheroid attachment.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , MicroRNAs/metabolismo , Gonadotropina Coriônica , Endométrio/metabolismo , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Feminino , Células HeLa , Humanos , Esferoides Celulares
5.
Fertil Steril ; 104(2): 474-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25999259

RESUMO

OBJECTIVE: To study the effect of human chorionic gonadotropin (hCG) on olfactomedin-1 (Olfm1) expression and spheroid attachment in human fallopian tube epithelial cells in vitro. DESIGN: Experimental study. SETTING: Reproductive biology laboratory. PATIENT(S): Healthy nonpregnant women. INTERVENTION(S): No patient interventions. MAIN OUTCOME MEASURE(S): Luteinizing hormone/chorionic gonadotropin receptor (LHCGR) and Olfm1 expression in fallopian tube epithelium cell line (OE-E6/E7 cells). OE-E6/E7 cells treated with hCG, U0126 extracellular signal-regulated kinase (ERK) inhibitor, or XAV939 Wnt/ß-catenin inhibitor were analyzed by Western blotting, real-time polymerase chain reaction, and in vitro spheroid attachment assay. RESULT(S): Human chorionic gonadotropin increased spheroid attachment on OE-E6/E7 cells through down-regulation of Olfm1 and activation of Wnt and mitogen-activated protein kinase (MAPK) signaling pathways. U0126 down-regulated both MAPK and Wnt/ß-catenin signaling pathways and up-regulated Olfm1 expression. XAV939 down-regulated only the Wnt/ß-catenin signaling pathway but up-regulated Olfm1 expression. CONCLUSION(S): Human chorionic gonadotropin activated both ERK and Wnt/ß-catenin signaling pathways and enhanced spheroid attachment on fallopian tube epithelial cells through down-regulation of Olfm1 expression.


Assuntos
Gonadotropina Coriônica/farmacologia , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Tubas Uterinas/metabolismo , Glicoproteínas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Epiteliais/efeitos dos fármacos , Tubas Uterinas/citologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade
6.
Exp Neurol ; 250: 205-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24095980

RESUMO

Olfactomedin 1 (Olfm1) is a secreted glycoprotein that is preferentially expressed in neuronal tissues. Here we show that deletion of exons 4 and 5 from the Olfm1 gene, which encodes a 52 amino acid long region in the N-terminal part of the protein, increased neonatal death and reduced body weight of surviving homozygous mice. Magnetic resonance imaging analyses revealed reduced brain volume and attenuated size of white matter tracts such as the anterior commissure, corpus callosum, and optic nerve. Adult Olfm1 mutant mice demonstrated abnormal behavior in several tests including reduced marble digging, elevated plus maze test, nesting activity and latency on balance beam tests as compared with their wild-type littermates. The olfactory system was both structurally and functionally disturbed by the mutation in the Olfm1 gene as shown by functional magnetic resonance imaging analysis and a smell test. Deficiencies of the olfactory system may contribute to the neonatal death and loss of body weight of Olfm1 mutant. Shotgun proteomics revealed 59 candidate proteins that co-precipitated with wild-type or mutant Olfm1 proteins in postnatal day 1 brain. Olfm1-binding targets included GluR2, Cav2.1, teneurin-4 and Kidins220. Modified interaction of Olfm1 with binding targets led to an increase in intracellular Ca(2+) concentration and activation of ERK1/2, MEK1 and CaMKII in the hippocampus and olfactory bulb of Olfm1 mutant mice compared with their wild-type littermates. Excessive activation of the CaMKII and Ras-ERK pathways in the Olfm1 mutant olfactory bulb and hippocampus by elevated intracellular calcium may contribute to the abnormal behavior and olfactory activity of Olfm1 mutant mice.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Éxons/genética , Proteínas da Matriz Extracelular/genética , Feminino , Glicoproteínas/genética , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA