Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.324
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 389-410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594926

RESUMO

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Ligantes , Descoberta de Drogas/métodos , Humanos , Proteínas/química , Proteínas/metabolismo , Aprendizado de Máquina , Sítios de Ligação , Desenho de Fármacos
2.
Cell ; 179(2): 527-542.e19, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585086

RESUMO

Much of current molecular and cell biology research relies on the ability to purify cell types by fluorescence-activated cell sorting (FACS). FACS typically relies on the ability to label cell types of interest with antibodies or fluorescent transgenic constructs. However, antibody availability is often limited, and genetic manipulation is labor intensive or impossible in the case of primary human tissue. To date, no systematic method exists to enrich for cell types without a priori knowledge of cell-type markers. Here, we propose GateID, a computational method that combines single-cell transcriptomics with FACS index sorting to purify cell types of choice using only native cellular properties such as cell size, granularity, and mitochondrial content. We validate GateID by purifying various cell types from zebrafish kidney marrow and the human pancreas to high purity without resorting to specific antibodies or transgenes.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Software , Transcriptoma , Animais , Humanos , Rim/citologia , Pâncreas/citologia , Análise de Célula Única , Peixe-Zebra/anatomia & histologia
3.
Annu Rev Biochem ; 87: 101-103, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925266

RESUMO

This article introduces the Protein Evolution and Design theme of the Annual Review of Biochemistry Volume 87.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas/genética , Proteínas/metabolismo , Animais , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Engenharia de Proteínas/métodos , Proteínas/química
4.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752172

RESUMO

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Assuntos
Sistemas CRISPR-Cas , Código de Barras de DNA Taxonômico , Linhagem da Célula/genética , Código de Barras de DNA Taxonômico/métodos , Humanos , Aprendizado de Máquina , Filogenia
5.
Annu Rev Pharmacol Toxicol ; 64: 527-550, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738505

RESUMO

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.


Assuntos
Inteligência Artificial , Médicos , Animais , Humanos , Reprodutibilidade dos Testes , Descoberta de Drogas , Tecnologia
6.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619319

RESUMO

Adult planarians can grow when fed and degrow (shrink) when starved while maintaining their whole-body shape. It is unknown how the morphogens patterning the planarian axes are coordinated during feeding and starvation or how they modulate the necessary differential tissue growth or degrowth. Here, we investigate the dynamics of planarian shape together with a theoretical study of the mechanisms regulating whole-body proportions and shape. We found that the planarian body proportions scale isometrically following similar linear rates during growth and degrowth, but that fed worms are significantly wider than starved worms. By combining a descriptive model of planarian shape and size with a mechanistic model of anterior-posterior and medio-lateral signaling calibrated with a novel parameter optimization methodology, we theoretically demonstrate that the feedback loop between these positional information signals and the shape they control can regulate the planarian whole-body shape during growth. Furthermore, the computational model produced the correct shape and size dynamics during degrowth as a result of a predicted increase in apoptosis rate and pole signal during starvation. These results offer mechanistic insights into the dynamic regulation of whole-body morphologies.


Assuntos
Modelos Biológicos , Planárias , Animais , Planárias/crescimento & desenvolvimento , Padronização Corporal , Transdução de Sinais , Apoptose , Morfogênese
7.
Proc Natl Acad Sci U S A ; 121(19): e2403384121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691585

RESUMO

Macromolecular complexes are often composed of diverse subunits. The self-assembly of these subunits is inherently nonequilibrium and must avoid kinetic traps to achieve high yield over feasible timescales. We show how the kinetics of self-assembly benefits from diversity in subunits because it generates an expansive parameter space that naturally improves the "expressivity" of self-assembly, much like a deeper neural network. By using automatic differentiation algorithms commonly used in deep learning, we searched the parameter spaces of mass-action kinetic models to identify classes of kinetic protocols that mimic biological solutions for productive self-assembly. Our results reveal how high-yield complexes that easily become kinetically trapped in incomplete intermediates can instead be steered by internal design of rate-constants or external and active control of subunits to efficiently assemble. Internal design of a hierarchy of subunit binding rates generates self-assembly that can robustly avoid kinetic traps for all concentrations and energetics, but it places strict constraints on selection of relative rates. External control via subunit titration is more versatile, avoiding kinetic traps for any system without requiring molecular engineering of binding rates, albeit less efficiently and robustly. We derive theoretical expressions for the timescales of kinetic traps, and we demonstrate our optimization method applies not just for design but inference, extracting intersubunit binding rates from observations of yield-vs.-time for a heterotetramer. Overall, we identify optimal kinetic protocols for self-assembly as a powerful mechanism to achieve efficient and high-yield assembly in synthetic systems whether robustness or ease of "designability" is preferred.


Assuntos
Algoritmos , Cinética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(31): e2404676121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042681

RESUMO

This work establishes a different paradigm on digital molecular spaces and their efficient navigation by exploiting sigma profiles. To do so, the remarkable capability of Gaussian processes (GPs), a type of stochastic machine learning model, to correlate and predict physicochemical properties from sigma profiles is demonstrated, outperforming state-of-the-art neural networks previously published. The amount of chemical information encoded in sigma profiles eases the learning burden of machine learning models, permitting the training of GPs on small datasets which, due to their negligible computational cost and ease of implementation, are ideal models to be combined with optimization tools such as gradient search or Bayesian optimization (BO). Gradient search is used to efficiently navigate the sigma profile digital space, quickly converging to local extrema of target physicochemical properties. While this requires the availability of pretrained GP models on existing datasets, such limitations are eliminated with the implementation of BO, which can find global extrema with a limited number of iterations. A remarkable example of this is that of BO toward boiling temperature optimization. Holding no knowledge of chemistry except for the sigma profile and boiling temperature of carbon monoxide (the worst possible initial guess), BO finds the global maximum of the available boiling temperature dataset (over 1,000 molecules encompassing more than 40 families of organic and inorganic compounds) in just 15 iterations (i.e., 15 property measurements), cementing sigma profiles as a powerful digital chemical space for molecular optimization and discovery, particularly when little to no experimental data is initially available.

9.
Proc Natl Acad Sci U S A ; 121(12): e2310002121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470929

RESUMO

We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training. By examining the underlying high-dimensional probabilistic models, we reveal that the training process explores an effectively low-dimensional manifold. Networks with a wide range of architectures, sizes, trained using different optimization methods, regularization techniques, data augmentation techniques, and weight initializations lie on the same manifold in the prediction space. We study the details of this manifold to find that networks with different architectures follow distinguishable trajectories, but other factors have a minimal influence; larger networks train along a similar manifold as that of smaller networks, just faster; and networks initialized at very different parts of the prediction space converge to the solution along a similar manifold.

10.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241440

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proliferação de Células , Doenças Renais Policísticas/metabolismo , Apoptose , Estresse Oxidativo , Cistos/metabolismo , DNA/metabolismo , Rim/metabolismo , Canais de Cátion TRPP/genética
11.
Proc Natl Acad Sci U S A ; 121(17): e2319625121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640343

RESUMO

Distributed nonconvex optimization underpins key functionalities of numerous distributed systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks to sensor networks. Recently, it has also merged as a promising solution to handle the enormous growth in data and model sizes in deep learning. A fundamental problem in distributed nonconvex optimization is avoiding convergence to saddle points, which significantly degrade optimization accuracy. We find that the process of quantization, which is necessary for all digital communications, can be exploited to enable saddle-point avoidance. More specifically, we propose a stochastic quantization scheme and prove that it can effectively escape saddle points and ensure convergence to a second-order stationary point in distributed nonconvex optimization. With an easily adjustable quantization granularity, the approach allows a user to control the number of bits sent per iteration and, hence, to aggressively reduce the communication overhead. Numerical experimental results using distributed optimization and learning problems on benchmark datasets confirm the effectiveness of the approach.

12.
Proc Natl Acad Sci U S A ; 121(8): e2215674121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359297

RESUMO

Sustainability outcomes are influenced by the laws and configurations of natural and engineered systems as well as activities in socio-economic systems. An important subset of human activity is the creation and implementation of institutions, formal and informal rules shaping a wide range of human behavior. Understanding these rules and codifying them in computational models can provide important missing insights into why systems function the way they do (static) as well as the pace and structure of transitions required to improve sustainability (dynamic). Here, we conduct a comparative synthesis of three modeling approaches- integrated assessment modeling, engineering-economic optimization, and agent-based modeling-with underexplored potential to represent institutions. We first perform modeling experiments on climate mitigation systems that represent specific aspects of heterogeneous institutions, including formal policies and institutional coordination, and informal attitudes and norms. We find measurable but uneven aggregate impacts, while more politically meaningful distributional impacts are large across various actors. Our results show that omitting institutions can influence the costs of climate mitigation and miss opportunities to leverage institutional forces to speed up emissions reduction. These experiments allow us to explore the capacity of each modeling approach to represent insitutions and to lay out a vision for the next frontier of endogenizing institutional change in sustainability science models. To bridge the gap between modeling, theories, and empirical evidence on social institutions, this research agenda calls for joint efforts between sustainability modelers who wish to explore and incorporate institutional detail, and social scientists studying the socio-political and economic foundations for sustainability transitions.


Assuntos
Modelos Teóricos , Análise de Sistemas , Humanos
13.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960409

RESUMO

Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.


Assuntos
Anticorpos , Aprendizado Profundo , Anticorpos/química , Anticorpos/imunologia , Humanos , Afinidade de Anticorpos , Biologia Computacional/métodos , Desenho de Fármacos
14.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39431516

RESUMO

Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using $in vitro$ methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff's superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, surface plasmon resonance experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of $87.9\%$ and $60.2\%$ in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Teorema de Bayes , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Simulação por Computador , Algoritmos , Ligantes
15.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385872

RESUMO

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Assuntos
Aprendizado Profundo , Humanos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Inibidores de Poli(ADP-Ribose) Polimerases
16.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39082647

RESUMO

Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF-enhancer linkage prediction, and enhancer-gene relation discovery. Application of STREAM to an Alzheimer's disease dataset and a diffuse small lymphocytic lymphoma dataset reveals its ability to identify TF-enhancer-gene relations associated with pseudotime, as well as key TF-enhancer-gene relations and TF cooperation underlying tumor cells.


Assuntos
Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sequenciamento de Cromatina por Imunoprecipitação , Algoritmos , Biologia Computacional/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Análise da Expressão Gênica de Célula Única
17.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960407

RESUMO

The optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations. AttABseq is a highly efficient and generic attention-based model by utilizing diverse antigen-antibody complex sequences as the input to predict the binding affinity changes of residue mutations. The assessment on the three benchmark datasets illustrates that AttABseq is 120% more accurate than other sequence-based models in terms of the Pearson correlation coefficient between the predicted and experimental binding affinity changes. Moreover, AttABseq also either outperforms or competes favorably with the structure-based approaches. Furthermore, AttABseq consistently demonstrates robust predictive capabilities across a diverse array of conditions, underscoring its remarkable capacity for generalization across a wide spectrum of antigen-antibody complexes. It imposes no constraints on the quantity of altered residues, rendering it particularly applicable in scenarios where crystallographic structures remain unavailable. The attention-based interpretability analysis indicates that the causal effects of point mutations on antibody-antigen binding affinity changes can be visualized at the residue level, which might assist automated antibody sequence optimization. We believe that AttABseq provides a fiercely competitive answer to therapeutic antibody optimization.


Assuntos
Complexo Antígeno-Anticorpo , Aprendizado Profundo , Complexo Antígeno-Anticorpo/química , Antígenos/química , Antígenos/genética , Antígenos/metabolismo , Antígenos/imunologia , Afinidade de Anticorpos , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Mutação , Anticorpos/química , Anticorpos/imunologia , Anticorpos/genética , Anticorpos/metabolismo
18.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39400114

RESUMO

Messenger RNA (mRNA) vaccines represent a groundbreaking advancement in immunology and public health, particularly highlighted by their role in combating the COVID-19 pandemic. Optimizing mRNA-based antigen expression is a crucial focus in this emerging industry. We have developed a bioinformatics tool named AntigenBoost to address the challenge posed by destabilizing dipeptides that hinder ribosomal translation. AntigenBoost identifies these dipeptides within specific antigens and provides a range of potential amino acid substitution strategies using a two-dimensional scoring system. Through a combination of bioinformatics analysis and experimental validation, we significantly enhanced the in vitro expression of mRNA-derived Respiratory Syncytial Virus fusion glycoprotein and Influenza A Hemagglutinin antigen. Notably, a single amino acid substitution improved the immune response in mice, underscoring the effectiveness of AntigenBoost in mRNA vaccine design.


Assuntos
Substituição de Aminoácidos , RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Biologia Computacional/métodos , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacinas de mRNA , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genética , Dipeptídeos/genética
19.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261343

RESUMO

Cryo-Electron Microscopy (cryo-EM) is a widely used and effective method for determining the three-dimensional (3D) structure of biological molecules. For ab-initio Cryo-EM 3D reconstruction using single particle analysis (SPA), estimating the projection direction of the projection image is a crucial step. However, the existing SPA methods based on common lines are sensitive to noise. The error in common line detection will lead to a poor estimation of the projection directions and thus may greatly affect the final reconstruction results. To improve the reconstruction results, multiple candidate common lines are estimated for each pair of projection images. The key problem then becomes a combination optimization problem of selecting consistent common lines from multiple candidates. To solve the problem efficiently, a physics-inspired method based on a kinetic model is proposed in this work. More specifically, hypothetical attractive forces between each pair of candidate common lines are used to calculate a hypothetical torque exerted on each projection image in the 3D reconstruction space, and the rotation under the hypothetical torque is used to optimize the projection direction estimation of the projection image. This way, the consistent common lines along with the projection directions can be found directly without enumeration of all the combinations of the multiple candidate common lines. Compared with the traditional methods, the proposed method is shown to be able to produce more accurate 3D reconstruction results from high noise projection images. Besides the practical value, the proposed method also serves as a good reference for solving similar combinatorial optimization problems.


Assuntos
Imageamento Tridimensional , Microscopia Crioeletrônica , Cinética
20.
Mol Cell Proteomics ; 23(9): 100825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111711

RESUMO

Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.


Assuntos
Mutação , Proteômica , Fluxo de Trabalho , Humanos , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas/métodos , Epitopos/imunologia , Neoplasias/imunologia , Peptídeos , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Espectrometria de Massa com Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA