Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 362, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460949

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is a valuable traditional Chinese medicinal plant, but its commercial production is seriously affected by root rot caused by some pathogenic fungi, including Fusarium solani. Nevertheless, the genetic breeding for disease resistance of P. notoginseng remains limited. The WRKY transcription factors have been revealed to play important roles in plant defense responses, which might provide an inspiration for resistance improvement in P. notoginseng. RESULTS: In this study, the regulatory mechanism of transcription factor PnWRKY15 on P. notoginseng resistance to F. solani infection was revealed. The suppressed expression of PnWRKY15 via RNA interference increased the sensitivity of P. notoginseng to F. solani and decreased the expression levels of some defense-related genes, including PnOLP1, which encodes an osmotin-like protein that confers resistance to F. solani. Ectopic expression of PnWRKY15 in the model plant tobacco significantly enhanced the resistance to F. solani. Moreover, the transcriptome sequencing analysis discovered that some pathogenesis-related genes were expressed at higher levels in the PnWRKY15-overexpressing tobacco than that in the wild-type tobacco. In addition, the jasmonic acid (JA) and salicylic acid (SA) signaling pathways were evidently induced by PnWRKY15-overexpression, that was evidenced by that the JA and SA contents were significantly higher in the PnWRKY15-overexpressing tobacco than that in the wild-type. Furthermore, PnWRKY15, which was localized in the nucleus, can trans-activate and up-regulate PnOLP1 expression according to the EMSA, yeast one-hybrid and co-expression assays. CONCLUSIONS: PnWRKY15 contributes to P. notoginseng resistance to F. solani by up-regulating the expression of resistance-related gene PnOLP1 and activating JA/SA signaling pathways. These findings will help to further elucidate the transcriptional regulatory mechanism associated with the P. notoginseng defense response to F. solani.


Assuntos
Fusarium , Panax notoginseng , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Panax notoginseng/genética , Melhoramento Vegetal , Transdução de Sinais , Fusarium/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 240(1): 173-190, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563927

RESUMO

The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics. Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots. This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration.


Assuntos
Arabidopsis , Hordeum , Hordeum/genética , Hordeum/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo
3.
J Biomed Sci ; 30(1): 66, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568205

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Both environmental and genetic aspects are involved in the pathogenesis of PD. Osmotin is a structural and functional homolog of adiponectin, which regulates the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) via adiponectin receptor 1 (AdipoR1), thus attenuating PD-associated pathology. Therefore, the current study investigated the neuroprotective effects of osmotin using in vitro and in vivo models of PD. METHODS: The study used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and neuron-specific enolase promoter human alpha-synuclein (NSE-hαSyn) transgenic mouse models and 1-methyl-4-phenylpyridinium (MPP+)- or alpha-synuclein A53T-treated cell models. MPTP was injected at a dose of 30 mg/kg/day for five days, and osmotin was injected twice a week at a dose of 15 mg/kg for five weeks. We performed behavioral tests and analyzed the biochemical and molecular changes in the substantia nigra pars compacta (SNpc) and the striatum. RESULTS: Based on our study, osmotin mitigated MPTP- and α-synuclein-induced motor dysfunction by upregulating the nuclear receptor-related 1 protein (Nurr1) transcription factor and its downstream markers tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2). From a pathological perspective, osmotin ameliorated neuronal cell death and neuroinflammation by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, osmotin alleviated the accumulation of α-synuclein by promoting the AMPK/mammalian target of rapamycin (mTOR) autophagy signaling pathway. Finally, in nonmotor symptoms of PD, such as cognitive deficits, osmotin restored synaptic deficits, thereby improving cognitive impairment in MPTP- and α-synuclein-induced mice. CONCLUSIONS: Therefore, our findings indicated that osmotin significantly rescued MPTP/α-synuclein-mediated PD neuropathology. Altogether, these results suggest that osmotin has potential neuroprotective effects in PD neuropathology and may provide opportunities to develop novel therapeutic interventions for the treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Substância Negra/metabolismo , Transdução de Sinais , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mamíferos
4.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762373

RESUMO

As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.


Assuntos
Antioxidantes , Cynodon , Congelamento , Cynodon/genética , Cynodon/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Genótipo , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628226

RESUMO

Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.


Assuntos
Aquaporinas , Solanum lycopersicum , Secas , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Plantas , Ribulose-Bifosfato Carboxilase
6.
BMC Plant Biol ; 21(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407136

RESUMO

BACKGROUND: Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS: In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven ß-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION: As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.


Assuntos
Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de DNA
7.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360680

RESUMO

Plants have evolutionarily established resistance responses to a variety of abiotic stress conditions, in which ABA mediates the integrated regulation of these stress responses. Numerous proteins function at the transcription level or at the protein level when contributing to controls of the ABA signaling process. Although osmotin is identified as a salt-inducible protein, its function in the abiotic stress response is yet to be elucidated. To examine the role of Arabidopsis OSMOTIN 34 (OSM34) in the ABA signaling pathway, a deletion mutant osm34 generated by a CRISPR/Cas9 system and the double mutant osm34 osml (osmotin 34-like) were analyzed for various ABA responses. Both osm34 and osm34 osml showed reduced levels of ABA responses in seeds and leaves. Moreover, proline level and expression of the proline biosynthesis gene P5CS1 was significantly reduced in osm34 osml. Interestingly, OSM34 binds to SKP2A, an F-Box protein whose transcription is induced by ABA. The protein stability of OSM34 was determined to be under the control of the 26S proteasome. In conclusion, our data suggest that OSM34 functions as a positive regulator in the generation of ABA responses and is under post-translational control.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prolina/análise , Proteólise
8.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924432

RESUMO

Osmotin, a plant defense protein, has functional similarity to adiponectin, an insulin sensitizingsensitising hormone secreted by adipocytes. We speculated that Piper colubrinum Osmotin (PcOSM) could have functional roles in obesity-related cancers, especially breast cancer. Immunofluorescence assays, flow cytometry, cell cycle analysis and a senescence assay were employed to delineate the activity in MDAMB231 breast cancer cell line. PcOSM pre-treated P. nigrum leaves showed significant reduction in disease symptoms correlated with high ROS production. In silico analysis predicted that PcOSM has higher binding efficiency with adiponectin receptor compared to adiponectin. PcOSM was effectively taken up by MDAMB231 cancer cells which resulted in marked increase in intracellular ROS levels leading to senescence and cell cycle arrest in G2/M stage. This study provides evidence on the ROS mediated direct inhibitory activity of the plant derived osmotin protein on the phytopathogen Phytophthora capsici, and the additional functional roles of this plant defense protein on cancer cells through inducing ROS associated senescence. The strong leads produced from this study could be pursued further to obtain more insights into the therapeutic potential of osmotin in human cancers.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Piper/química , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos
9.
Inflamm Res ; 69(9): 951-966, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488316

RESUMO

OBJECTIVE AND DESIGN: Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS: Male Golden Sirius hamsters were used in all treatments. TREATMENT: The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS: Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS: PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS: Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.


Assuntos
Anti-Inflamatórios/uso terapêutico , Calotropis/química , Látex/química , Proteínas de Plantas/uso terapêutico , Estomatite/tratamento farmacológico , Animais , Fluoruracila/toxicidade , Masculino , Mesocricetus , Estomatite/patologia
10.
Phytopathology ; 110(8): 1419-1427, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32301678

RESUMO

Osmotin and osmotin-like proteins (OLPs) play important roles in plant defense responses. The full-length cDNA sequence of an OLP gene was cloned from Panax notoginseng using rapid amplification of cDNA-end technology and named PnOLP1. A quantitative reverse transcription-PCR analysis showed that the signaling molecules methyl jasmonate, salicylic acid, ethylene, and hydrogen peroxide induced PnOLP1 expression to different degrees. In addition, the expression level of PnOLP1 rapidly increased within 48 h of inoculating P. notoginseng with the root rot pathogen Fusarium solani. Subcellular localization revealed that PnOLP1 localized to the cell wall. A prokaryotic expression vector containing PnOLP1 was constructed and transformed into Escherichia coli BL21 (DE3), and in vitro antifungal assays were performed using the purified recombinant PnOLP1 protein. The recombinant PnOLP1 protein had strong inhibitory effects on the mycelial growth of F. oxysporum, F. graminearum, and F. solani. A plant PnOLP1-overexpression vector was constructed and transfected into tobacco, and the resistance of T2 transgenic tobacco against F. solani was significantly enhanced compared with wild-type tobacco. Moreover, a PnOLP1 RNAi vector was constructed and transferred to the P. notoginseng leaves for transient expression, and the decrease of PnOLP1 expression level in P. notoginseng leaves increased the susceptibility to F. solani. Thus, PnOLP1 is an important disease resistance gene involved in the defense responses of P. notoginseng to F. solani.


Assuntos
Fusarium , Panax notoginseng , Ciclopentanos , Resistência à Doença , Humanos , Oxilipinas , Doenças das Plantas
11.
Mol Genet Genomics ; 294(5): 1137-1157, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31030277

RESUMO

Osmotin is an important multifunctional protein related to plant stress responses and is classified into the thaumatin-like protein (TLP) family. Using genome-wide and phylogenetic approaches, we investigated osmotin origin and diversification across plant TLP evolution. Genomic and protein in silico analysis tools were also accessed and considered for the study conclusions. Phylogenetic analysis including a total of 722 sequences from 32 Viridiplantae species allowed the identification of an osmotin group that includes all previously characterized osmotins. Based on the phylogenetic tree results, it is evident that the osmotin group emerged from spermatophytes. Phylogenetic separation and gene expansion could be accounted for by an exclusive motif composition and organization that emerged and was maintained following tandem and block duplications as well as natural selection. The TLP family conserved residues and structures that were also identified in the sequences of the osmotin group, thus suggesting their maintenance for defense responses. The gene expression of Arabidopsis and rice putative osmotins reinforces its roles during stress response.


Assuntos
Família Multigênica/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Evolução Molecular , Expressão Gênica/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Filogenia
12.
New Phytol ; 215(1): 397-410, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28480965

RESUMO

The broad-range phytopathogenic fungus Botrytis cinerea secretes hundreds of proteins during infection of its plant hosts. One of these proteins, BcIEB1, is abundantly secreted and is able to elicit plant defenses, probably as a pathogen-associated molecular pattern, although its native function in B. cinerea biology remains unknown. Pull-down experiments designed to isolate the molecular target of BcIEB1 in tobacco resulted in the identification of osmotin, a pathogenesis-related protein of family 5 that shows antifungal activity. The expression of osmotin in Escherichia coli allowed the verification of the BcIEB1-osmotin interaction with pure proteins by pull-down and far Western blot experiments, as well as the confirmation of the activity of osmotin against B. cinerea. Interestingly, B. cinerea Δbcieb1 mutants are more susceptible than the wild-type to osmotin, and the external addition of pure BcIEB1 protects the Δbcieb1 mutants, as well as Saccharomyces cerevisiae, from the antifungal action of osmotin, thus pointing at PR5 inhibition as the primary native function of BcIEB1. The question of whether osmotin is also involved in the activation of plant defenses by BcIEB1 is also addressed, and the data suggest that osmotin does not participate in the elicitation process.


Assuntos
Botrytis/patogenicidade , Proteínas Fúngicas/fisiologia , Nicotiana/microbiologia , Proteínas de Plantas/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo
13.
Protein Expr Purif ; 129: 84-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654923

RESUMO

The osmotin protein is involved in both monocot and dicot plant responses to biotic and abiotic stress. To determine the biological activity of osmotin, the gene was amplified from tobacco genomic DNA, fused with the hexahistidine tag motif and successfully expressed in Escherichia coli, after which the recombinant osmotin was purified and renatured. Various activities were then tested, including hemolytic activity, toxicity against human embryonic kidney cells, and the antifungal activity of the recombinant osmotin. We found that osmotin had no adverse effects on human kidney cells up to a concentration of 500 µg.ml-1. However, the purified osmotin also had significant antimicrobial activity, specifically against fungal pathogens causing candidiasis and otitis, and against the common food pathogens. Using the osmotin-Agrobacterium construct, the osmotin gene was inserted into tobacco plants in order to facilitate the isolation of recombinant protein. Using qPCR, the presence and copy number of the transgene was detected in the tobacco plant DNA. The transgene was also quantified using mRNA, and results indicated a strong expression profile, however the native protein has been never isolated. Once the transgene presence was confirmed, the transgenic tobacco plants were grown in high saline concentrations and monitored for seed germination and chlorophyll content as indicators of overall plant health. Results indicated that the transgenic tobacco plants had a higher tolerance for osmotic stress. These results indicate that the osmotin gene has the potential to increase crop tolerance to stresses such as fungal attack and unfavorable osmotic conditions.


Assuntos
Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Plantas Tolerantes a Sal , Humanos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
14.
Curr Genomics ; 18(6): 553-556, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29204083

RESUMO

INTRODUCTION: Salt stress is one of the most important abiotic stress factors which severely affect agricultural production. Osmotins and OLPs (osmotin like proteins) are kinds of proteins which were produced during plant adapting to the environmental stress. OBJECTIVE: These proteins were closely related to osmotic regulation and resistance stress. They are widely distributed in plants. Their expression for these genes was induced by salt stress, which played important roles in plants responding to salt stress. CONCLUSION: During salt stress, osmotin can help accumulate proline, and quench reactive oxygen species and free radicals.

15.
Planta ; 243(5): 1279-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26919986

RESUMO

MAIN CONCLUSION: Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.


Assuntos
Aclimatação/genética , Olea/genética , Dormência de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Temperatura Baixa , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Metabolismo dos Lipídeos/genética , Olea/citologia , Olea/fisiologia , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estações do Ano
16.
Clin Exp Immunol ; 179(1): 128-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25142552

RESUMO

Osmotin, a protein from the pathogenesis-related family (PR-5), has been identified as an allergen based on in-silico and in-vitro studies. In the present study, three B cell epitopes of osmotin with single and double amino acid modifications were studied for immunotherapy in a murine model. The single-modification peptides (P-1-1, P-2-1 and P-3-1) and double-modification peptides (P-1-2, P-2-2 and P-3-2) showed significantly lower immunoglobulin (Ig)E binding with patients' sera compared to osmotin (P < 0·01). These peptides showed reduced IgE binding compared to the unmodified peptides (B cell epitopes) P-1, P-2 and P-3. Among the modified peptides, P-2-1, P-3-1, P-2-2 and P-3-2 showed significant reduction in IgE binding and were used for immunotherapy in mice. The sera of mice group treated with peptides showed a significant increase in IgG2a level and a significant decrease in IgE and IgG1 levels (P < 0·05). The mice that received peptide immunotherapy showed a shift from a T helper type 2 (Th2) to Th1 type where interferon (IFN)-γ and interleukin (IL)-10 levels were elevated, with a significant increase in groups treated with peptides P-3-1 and P-3-2 (P < 0·05). There was a reduction in the IL-4 and IL-5 levels in bronchoalveolar lavage fluid (BALF) in the peptide-treated mice groups. Total cell count and eosinophil count in BALF of the peptide-treated groups was also reduced compared to the phosphate-buffered saline (PBS)-treated group. Lung histology showed a significant reduction in cellular infiltrate in mice treated with P-2-2 and P-3-2 compared to PBS. In conclusion, peptides P-2-2 and P-3-2 lowered inflammatory responses and induced a Th1 response in mice.


Assuntos
Epitopos de Linfócito B/administração & dosagem , Epitopos de Linfócito B/imunologia , Imunoterapia , Inflamação/imunologia , Inflamação/terapia , Alérgenos/administração & dosagem , Alérgenos/química , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Epitopos de Linfócito B/química , Feminino , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/imunologia
17.
Pest Manag Sci ; 80(4): 2154-2161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153938

RESUMO

BACKGROUND: Rice is one of the most consumed cereals in the world. Productivity losses are caused by different biotic stresses. One of the most common is the phytophagous mite Schizotetranychus oryzae Rossi de Simons (Acari: Tetranychidae), which inhibits plant development and seed production. The identification of plant defense proteins is important for a better understanding of the mite-plant interaction. We previously detected a high expression of Osmotin1 protein in mite-resistant rice cultivars, under infested conditions, suggesting it could be involved in plant defense against mite attack. We therefore aimed to evaluate the responses of three rice lines overexpressing Osmotin1 (OSM1-OE) and three lines lacking the Osmotin1 gene (osm1-ko) to mite attack. RESULTS: The numbers of individuals (adults, immature stages, and eggs) were significantly lower in OSM1-OE lines than those in wild-type (WT) plants. On the other hand, the osm1-ko lines showed larger numbers of mites per leaf than WT plants. When plants reached the full maturity stage, two out of the three infested OSM1-OE lines presented lower plant height than WT, while the three osm1-ko lines (infested or not) presented higher plant height than WT. The reduction in seed number caused by mite infestation was lower in OSM1-OE lines (12-19%) than in WT plants (34%), while osm1-ko lines presented higher reduction (24-54%) in seed number than WT plants (13%). CONCLUSION: These data suggest that Osmotin1 is involved in rice resistance to S. oryzae infestation. This is the first work showing increased plant resistance to herbivory overexpressing an Osmotin gene. © 2023 Society of Chemical Industry.


Assuntos
Infestações por Ácaros , Ácaros , Oryza , Tetranychidae , Humanos , Animais , Tetranychidae/genética , Tetranychidae/metabolismo , Oryza/genética , Oryza/metabolismo , Ácaros/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
J Agric Food Chem ; 72(3): 1487-1499, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215405

RESUMO

Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.


Assuntos
Ascomicetos , Ipomoea batatas , Espécies Reativas de Oxigênio , Esporos Fúngicos , Ceratocystis , Ipomoea batatas/microbiologia
19.
Ageing Res Rev ; 100: 102447, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111409

RESUMO

Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.

20.
Planta ; 238(6): 1113-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022744

RESUMO

Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.


Assuntos
Capsicum/genética , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Capsicum/microbiologia , Morte Celular , Inativação Gênica , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Explosão Respiratória , Nicotiana/genética , Nicotiana/metabolismo , Xanthomonas campestris/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA