Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241258113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744426

RESUMO

Background: Recent studies have demonstrated that activated microglia were involved in the pathogenesis of central sensitization characterized by cutaneous allodynia in migraine. Activation of microglia is accompanied by increased expression of its receptors and release of inflammatory mediators. Acupuncture and its developed electroacupuncture (EA) have been recommended as an alternative therapy for migraine and are widely used for relieving migraine-associated pain. However, it remains rare studies that show whether EA exerts anti-migraine effects via inhibiting microglial activation related to a release of microglial receptors and the inflammatory pathway. Therefore, this study aimed to investigate EA' ability to ameliorate central sensitization via modulation of microglial activation, microglial receptor, and inflammatory response using a rat model of migraine induced by repeated epidural chemical stimulation. Methods: In the present study, a rat model of migraine was established by epidural repeated inflammatory soup (IS) stimulation and treated with EA at Fengchi (GB20) and Yanglingquan (GB34) and acupuncture at sham-acupoints. Pain hypersensitivity was further determined by measuring the mechanical withdrawal threshold using the von-Frey filament. The changes in c-Fos and ionized calcium binding adaptor molecule 1 (Ibal-1) labeled microglia in the trigeminal nucleus caudalis (TNC) were examined by immunflurescence to assess the central sensitization and whether accompanied with microglia activation. In addition, the expression of Ibal-1, microglial purinoceptor P2X4, and its associated inflammatory signaling pathway mediators, including interleukin (IL)-1ß, NOD-like receptor protein 3 (NLRP3), and Caspase-1 in the TNC were investigated by western blot and real-time polymerase chain reaction analysis. Results: Allodynia increased of c-Fos, and activated microglia were observed after repeated IS stimulation. EA alleviated the decrease in mechanical withdrawal thresholds, reduced the activation of c-Fos and microglia labeled with Ibal-1, downregulated the level of microglial purinoceptor P2X4, and limited the inflammatory response (NLRP3/Caspase-1/IL-1ß signaling pathway) in the TNC of migraine rat model. Conclusions: Our results indicate that the anti-hyperalgesia effects of EA ameliorate central sensitization in IS-induced migraine by regulating microglial activation related to P2X4R and NLRP3/IL-1ß inflammatory pathway.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Hiperalgesia , Inflamação , Microglia , Transtornos de Enxaqueca , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4 , Animais , Eletroacupuntura/métodos , Receptores Purinérgicos P2X4/metabolismo , Microglia/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Transtornos de Enxaqueca/terapia , Transtornos de Enxaqueca/metabolismo , Masculino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Sensibilização do Sistema Nervoso Central/fisiologia , Ratos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
2.
Cell Biol Int ; 48(3): 358-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100213

RESUMO

Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvß3/αvß5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVß3/αVß5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.


Assuntos
Vesículas Extracelulares , Microglia , Humanos , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Mucosa Bucal/metabolismo , Transdução de Sinais , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Microdomínios da Membrana/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548395

RESUMO

Extracellular adenosine triphosphate (ATP) released by mucosal immune cells and by microbiota in the intestinal lumen elicits diverse immune responses that mediate the intestinal homeostasis via P2 purinergic receptors, while overactivation of ATP signaling leads to mucosal immune system disruption, which leads to pathogenesis of intestinal inflammation. In the small intestine, hydrolysis of luminal ATP by ectonucleoside triphosphate diphosphohydrolase (E-NTPD)7 in epithelial cells is essential for control of the number of T helper 17 (Th17) cells. However, the molecular mechanism by which microbiota-derived ATP in the colon is regulated remains poorly understood. Here, we show that E-NTPD8 is highly expressed in large-intestinal epithelial cells and hydrolyzes microbiota-derived luminal ATP. Compared with wild-type mice, Entpd8-/- mice develop more severe dextran sodium sulfate-induced colitis, which can be ameliorated by either the depletion of neutrophils and monocytes by injecting with anti-Gr-1 antibody or the introduction of P2rx4 deficiency into hematopoietic cells. An increased level of luminal ATP in the colon of Entpd8-/- mice promotes glycolysis in neutrophils through P2x4 receptor-dependent Ca2+ influx, which is linked to prolonged survival and elevated reactive oxygen species production in these cells. Thus, E-NTPD8 limits intestinal inflammation by controlling metabolic alteration toward glycolysis via the P2X4 receptor in myeloid cells.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Colite/prevenção & controle , Glicólise , Células Mieloides/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Células Cultivadas , Colite/etiologia , Colite/metabolismo , Colite/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/patologia , Receptores Purinérgicos P2X4/genética , Transdução de Sinais
4.
J Neurovirol ; 29(3): 241-251, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166584

RESUMO

HIV-associated sensory neuropathy (HIV-SN) affects 14-38% of HIV+ individuals stable on therapy with no neurotoxic drugs. Polymorphisms in CAMKK2, P2X7R and P2X4R associated with altered risk of HIV-SN in Indonesian and South African patients. The role of CaMKK2 in neuronal repair makes this an attractive candidate, but a direct role for any protein is predicated on expression in affected tissues. Here, we describe expression of CaMKK2, P2X7R and P2X4R proteins in skin biopsies from the lower legs of HIV+ Indonesians with and without HIV-SN, and healthy controls (HC). HIV-SN was diagnosed using the Brief Peripheral Neuropathy Screen. Biopsies were stained to detect protein gene product 9.5 on nerve fibres and CaMKK2, P2X7R or P2X4R, and were examined using 3-colour sequential scanning confocal microscopy. Intraepidermal nerve fibre densities (IENFD) were lower in HIV+ donors than HC and correlated directly with nadir CD4 T-cell counts (r = 0.69, p = 0.004). However, IENFD counts were similar in HIV-SN+ and HIV-SN- donors (p = 0.19) and so did not define neuropathy. CaMKK2+ cells were located close to dermal and epidermal nerve fibres and were rare in HC and HIV-SN- donors, consistent with a role for the protein in nerve damage and/or repair. P2X7R was expressed by cells in blood vessels of HIV-SN- donors, but rarely in HC or HIV-SN+ donors. P2X4R expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. Overall, the differential expression of CaMKK2, P2X7R and P2X4R supports the genetic evidence of a role for these proteins in HIV-SN.


Assuntos
Infecções por HIV , Doenças do Sistema Nervoso Periférico , Humanos , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/complicações , Pele , Biópsia , Polimorfismo de Nucleotídeo Único , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
5.
Purinergic Signal ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870716

RESUMO

Diabetic neuropathic pain (DNP) is a common and destructive complication of diabetes mellitus. The discovery of effective therapeutic methods for DNP is vitally imperative because of the lack of effective treatments. Although 2 Hz electroacupuncture (EA) was a successful approach for relieving DNP, the mechanism underlying the effect of EA on DNP is still poorly understood. Here, we established a rat model of DNP that was induced by streptozotocin (STZ) injection. P2X4R was upregulated in the spinal cord after STZ-injection. The upregulation of P2X4R was mainly expressed on activated microglia. Intrathecal injection of a P2X4R antagonist or microglia inhibitor attenuated STZ-induced nociceptive thermal hyperalgesia and reduced the overexpression of brain-derived neurotrophic factor (BDNF), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the spinal cord. We also assessed the effects of EA treatment on the pain hypersensitivities of DNP rats, and further investigated the possible mechanism underlying the analgesic effect of EA. EA relieved the hyperalgesia of DNP. In terms of mechanism, EA reduced the upregulation of P2X4R on activated microglia and decreased BDNF, IL-1ß and TNF-α in the spinal cord. Mechanistic research of EA's analgesic impact would be beneficial in ensuring its prospective therapeutic effect on DNP as well as in extending EA's applicability.

6.
Purinergic Signal ; 19(1): 297-303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35821455

RESUMO

The neurotrophin brain-derived neurotrophic factor (BDNF), which acts as a transducer, is responsible for improving cerebral stroke, neuropathic pain, and depression. Exercise can alter extracellular nucleotide levels and purinergic receptors in central nervous system (CNS) structures. This inevitably activates or inhibits the expression of BDNF via purinergic receptors, particularly the P2X receptor (P2XR), to alleviate pathological progression. In addition, the significant involvement of sensitive P2X4R in mediating increased BDNF and p38-MAPK for intracerebral hemorrhage and pain hypersensitivity has been reported. Moreover, archetypal P2X7R blockade induces mouse antidepressant-like behavior and analgesia by BDNF release. This review summarizes BDNF-mediated neural effects via purinergic receptors, speculates that P2X4R and P2X7R could be priming molecules in exercise-mediated changes in BDNF, and provides strategies for the protective mechanism of exercise in neurogenic disease.


Assuntos
Neuralgia , Acidente Vascular Cerebral , Animais , Camundongos , Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Neuroproteção , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7/metabolismo
7.
Headache ; 63(8): 1154-1166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638395

RESUMO

OBJECTIVE: To assess the potential of autophagy in migraine pathogenesis. BACKGROUND: The interplay between neurons and microglial cells is important in migraine pathogenesis. Migraine-related effects, such as cortical spreading depolarization and release of calcitonin gene-related peptide, may initiate adenosine triphosphate (ATP)-mediating pro-nociceptive signaling in the meninges causing headaches. Such signaling may be induced by the interaction of ATP with purinergic receptor P2X 7 (P2X7R) on microglial cells leading to a Ca2+ -mediated pH increase in lysosomes and release of autolysosome-like vehicles from microglial cells indicating autophagy impairment. METHODS: A search in PubMed was conducted with the use of the terms "migraine," "autophagy," "microglia," and "degradation" in different combinations. RESULTS: Impaired autophagy in microglia may activate secretory autophagy and release of specific proteins, including brain-derived neurotrophic factor (BDNF), which can be also released through the pores induced by P2X7R activation in microglial cells. BDNF may be likewise released from microglial cells upon ATP- and Ca2+ -mediated activation of another purinergic receptor, P2X4R. BDNF released from microglia might induce autophagy in neurons to clear cellular debris produced by oxidative stress, which is induced in the brain as the response to migraine-related energy deficit. Therefore, migraine-related signaling may impair degradative autophagy, stimulate secretory autophagy in microglia, and degradative autophagy in neurons. These effects are mediated by purinergic receptors P2X4R and P2X7R, BDNF, ATP, and Ca2+ . CONCLUSION: Different effects of migraine-related events on degradative autophagy in microglia and neurons may prevent prolonged changes in the brain related to headache attacks.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtornos de Enxaqueca , Humanos , Cefaleia , Encéfalo , Trifosfato de Adenosina , Autofagia
8.
J Appl Biomed ; 21(4): 193-199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112458

RESUMO

Naringin inhibits inflammation and oxidative stress, the P2 purinoreceptor X4 receptor (P2X4R) is associated with glial cell activation and inflammation, the purpose of this study is to investigate the effects of naringin on P2X4 receptor expression on satellite glial cells (SGCs) and its possible mechanisms. ATP promoted the SGC activation and upregulated P2X4R expression; naringin inhibited SGC activation, decreased expression of P2X4R, P38 MAPK/ERK, and NF-κB, and reduced levels of Ca2+, TNF-α, and IL-1ß in SGCs in an ATP-containing environment. These findings suggest that naringin attenuates the ATP-induced SGC activation and reduces P2X4R expression via the Ca2+-P38 MAPK/ERK-NF-κB pathway.


Assuntos
NF-kappa B , Receptores Purinérgicos P2X4 , Ratos , Animais , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Animais Recém-Nascidos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Neuroglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Inflamação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
9.
Phytother Res ; 36(9): 3644-3661, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35976195

RESUMO

Neuropathic pain is chronic pain resulting from central or peripheral nerve damage that remains difficult to treat. Current evidence suggests that nobiletin, isolated from Citrus reticulata Blanco, possesses analgesic and neuroprotective effects. However, its effect on neuropathic pain has not been reported. This study evaluated the analgesic effect of nobiletin on neuropathic pain induced by chronic constriction injury (CCI) in mice. In vivo, mice were intragastrically administered with nobiletin (30, 60, 120 mg/kg) for eight consecutive days, respectively. Our study indicated that nobiletin ameliorated mechanical allodynia, cold allodynia and thermal hyperalgesia on CCI mice at doses that do not induce significant sedation. Moreover, nobiletin could ameliorate axonal and myelin injury of the sciatic nerve and further restore abnormal sciatic nerve electrical activity on CCI mice. In vitro studies indicated that nobiletin could suppress the proteins and mRNA expression of the IRF5/P2X4R/BDNF signalling pathway in fibronectin-induced BV2 cells. Overall, our results indicated that nobiletin might exert an analgesic effect on CCI-induced neuropathic pain in mice by inhibiting the IRF5/P2X4R/BDNF signalling pathway in spinal microglia. This study provided a novel potential therapeutic drug for neuropathic pain and new insights into the pharmacological action of nobiletin.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuralgia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Constrição , Modelos Animais de Doenças , Flavonas , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nervo Isquiático/lesões
10.
Int J Neurosci ; : 1-11, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36066545

RESUMO

PURPOSE: Microglia-mediated inflammation is associated with perioperative neurocognitive disorders (PNDs) caused by sevoflurane. Dexmedetomidine has been reported to protect against sevoflurane-induced cognitive impairment. In this study, we investigated the effects and underlying mechanisms of dexmedetomidine on sevoflurane-induced microglial neuroinflammation and PNDs. METHODS: Wild-type and purinergic ionotropic 4 receptor (P2X4R) overexpressing C57/BL6 mice were intraperitoneally injected with 20 µg/kg dexmedetomidine or an equal volume of normal saline 2 h prior to sevoflurane exposure. The Morris water maze (MWM) test was performed to assess cognitive function. Immunofluorescence staining was employed to detect microglial activation. The expression levels of proinflammatory cytokines were measured by real-time quantitative PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The protein levels of P2X4R and NOD-like receptor protein 3 (NLRP3) were detected by Western Blotting. RESULTS: Sevoflurane increased the number of microglia, upregulated the levels of proinflammatory cytokines, elevated the protein levels of P2X4R and NLRP3 in the hippocampus and induced cognitive decline, while pretreatment with dexmedetomidine downregulated the protein levels of P2X4R and NLRP3, alleviated sevoflurane-induced microglial neuroinflammation and improved cognitive dysfunction. Moreover, overexpression of P2X4R weakened the neuroprotective effect of dexmedetomidine. CONCLUSIONS: Dexmedetomidine protected against sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway.

11.
J Neuroinflammation ; 18(1): 184, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425835

RESUMO

BACKGROUND: White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. METHODS: ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. RESULTS: After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. CONCLUSIONS: Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury.


Assuntos
Hemorragia Cerebral/patologia , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Benzodiazepinonas/farmacologia , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas Tirosina Quinases/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
12.
Cell Mol Neurobiol ; 41(2): 293-307, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32382851

RESUMO

The main pathological features of ischemic stroke include neuronal damage and blood-brain barrier (BBB) dysfunction. Previous studies have shown that Evans Blue, a dye used to probe BBB integrity, could enter the brain only during the pathological status of ischemic stroke, indicating the potential pathologically activated therapeutic use of this chemical to treat ischemic stroke. In this study, we have reported that Evans Blue could produce in vitro neuroprotective effects against iodoacetic acid (IAA)-induced hypoxia neuronal death in HT22 cells. We further found that P2X purinoreceptor 4 (P2X4R), a subtype of ATP-gated cation channel, was expressed in HT22 cells. Evans Blue could prevent IAA-induced increase of P2X4R mRNA and protein expression. Interestingly, shRNA of P2X4R could protect against IAA-induced activation of p38, and SB203580, a specific inhibitor of p38, could reverse IAA-induced neurotoxicity, indicating that p38 is a downstream signaling molecule of P2X4R. Molecular docking analysis further demonstrated the possible interaction between Evans Blue and the ATP binding site of P2X4R. Most importantly, pre-treatment of Evans Blue could largely reduce neurological and behavioral abnormity, and decrease brain infarct volume in middle cerebral artery occlusion/reperfusion (MCAO) rats. All these results strongly suggested that Evans Blue could exert neuroprotective effects via inhibiting the P2X4R/p38 pathway, possibly by acting on the ATP binding site of P2X4R, indicating that Evans Blue might be further developed as a pathologically activated therapeutic drug against ischemic stroke.


Assuntos
Azul Evans/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Infarto Encefálico/complicações , Infarto Encefálico/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Ácido Iodoacético , Masculino , Camundongos , Modelos Biológicos , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Exp Mol Pathol ; 120: 104636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838119

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative condition resulting in progressive cognitive decline. Pathological features include Aß plaques, neurofibrillary tangles, neuroinflammation and neuronal death. Purinergic receptors 7 and 4 (P2X7R and P2X4R) and calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) are implicated in neuronal death. We used immunohistochemistry to investigate the distribution of these proteins in neurones from frontal cortex of donors (n = 3/group; aged 79-83 years) who died with and without AD. Neurones were identified morphologically and immunoperoxidase staining was achieved using commercial antibodies. Immunoreactive neurones were counted for each protein by 2-3 raters blinded to the diagnoses. We observed no differences in percentages of P2X7R, P2X4R or CaMKK2 positive neurones (p = 0.2-0.99), but sections from individuals with AD had marginally fewer neurones (p = 0.10). Hence P2X7R, P2X4R or CaMKK2 appear to be expressed in neurones from older donors, but expression does not associate with AD.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Lobo Frontal/patologia , Células Piramidais/patologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Feminino , Lobo Frontal/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Prognóstico , Células Piramidais/metabolismo
14.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298909

RESUMO

To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at -22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.


Assuntos
Cisteína/metabolismo , Domínios Proteicos/fisiologia , Proteína Ribossômica L10/metabolismo , Zinco/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Metais/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Receptores Purinérgicos P2X4 , Água/metabolismo
15.
Pharmacol Res ; 158: 104875, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407956

RESUMO

Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.


Assuntos
Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X4/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Oxazinas/metabolismo , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Estrutura Secundária de Proteína , Agonistas do Receptor Purinérgico P2X/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/química
16.
J Headache Pain ; 21(1): 4, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937253

RESUMO

BACKGROUND: According to our previous study, microglia P2X4 receptors (P2X4Rs) play a pivotal role in the central sensitization of chronic migraine (CM). However, the molecular mechanism that underlies the crosstalk between microglia P2X4Rs and neurons of the trigeminal nucleus caudalis (TNC) is not fully understood. Therefore, the aim of this study is to examine the exact P2X4Rs signalling pathway in the development of central sensitization in a CM animal model. METHODS: We used an animal model with recurrent intermittent administration of nitroglycerin (NTG), which closely mimics CM. NTG-induced basal mechanical and thermal hypersensitivity were evaluated using a von Frey filament test and an increasing-temperature hot plate apparatus (IITC). We detected P2X4Rs, brain-derived neurotrophic factor (BDNF) and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) expression profiles in the TNC. We investigated the effects of a P2X4R inhibitor (5-BDBD) and an agonist (IVM) on NTG-induced hyperalgesia and neurochemical changes as well as on the expression of p-p38-MAPK and BDNF. We also detected the effects of a tropomyosin-related kinase B (TrkB) inhibitor (ANA-12) on the CM animal model in vivo. Then, we evaluated the effect of 5-BDBD and SB203580 (a p38-MAPK inhibitors) on the release and synthesis of BDNF in BV2 microglia cells treated with 50 µM adenosine triphosphate (ATP). RESULTS: Chronic intermittent administration of NTG resulted in chronic mechanical and thermal hyperalgesia, accompanied by the upregulation of P2X4Rs and BDNF expression. 5-BDBD or ANA-12 prevented hyperalgesia induced by NTG, which was associated with a significant inhibition of the NTG-induced increase in phosphorylated extracellular regulated protein kinases (p-ERK) and calcitonin gene related peptide (CGRP) release in the TNC. Repeated administration of IVM produced sustained hyperalgesia and significantly increased the levels of p-ERK and CGRP release in the TNC. Activating P2X4Rs with ATP triggered BDNF release and increased BDNF synthesis in BV2 microglia, and these results were then reduced by 5-BDBD or SB203580. CONCLUSIONS: Our results indicated that the P2X4R contributes to the central sensitization of CM by releasing BDNF and promoting TNC neuronal hyper-excitability. Blocking microglia P2X4R-BDNF signalling may have an effect on the prevention of migraine chronification.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Microglia/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Receptores Purinérgicos P2X4/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Microglia/metabolismo , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Glia ; 67(1): 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306657

RESUMO

Of the seven P2X receptor subtypes, P2X4 receptor (P2X4R) is widely distributed in the central nervous system, including in neurons, astrocytes, and microglia. Accumulating evidence supports roles for P2X4R in the central nervous system, including regulating cell excitability, synaptic transmission, and neuropathic pain. However, little information is available about the distribution and function of P2X4R in the peripheral nervous system. In this study, we find that P2X4R is mainly localized in the lysosomes of Schwann cells in the peripheral nervous system. In cultured Schwann cells, TNF-a not only enhances the synthesis of P2X4R protein but also promotes P2X4R trafficking to the surface of Schwann cells. TNF-a-induced BDNF secretion in Schwann cells is P2X4R dependent. in vivo experiments reveal that expression of P2X4R in Schwann cells of injured nerves is strikingly upregulated following nerve crush injury. Moreover, overexpression of P2X4R in Schwann cells by genetic manipulation promotes motor and sensory functional recovery and accelerates nerve remyelination via BDNF release following nerve injury. Our results suggest that enhancement of P2X4R expression in Schwann cells after nerve injury may be an effective approach to facilitate the regrowth and remyelination of injured nerves.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Purinérgicos P2X4/biossíntese , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Células de Schwann/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/agonistas , Células Cultivadas , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Fator de Necrose Tumoral alfa/toxicidade
18.
J Cell Biochem ; 120(4): 6322-6329, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362154

RESUMO

Purinergic receptor P2X 4 (P2X4R), a member of purinergic channels family and a subtype of ionotropic adenosine triphosphate receptors, plays a critical role in tumorigenesis. Evidence suggested that P2X4R is expressed in rat C6 glioma model, however, its role and the underlying mechanism of action are still unclear in human glioblastoma multiforme (GBM). In the current study, our aim is to examine the function and the molecular basis of P2X4R in GBM. We first observed that GBM cells, U251, T98, U87, U373, and A172 were all high expressed P2X4R, when compared with the normal human astrocytes (NHA) cells. To gain the function of P2X4R, P2X4R silence cells were constructed by transfection with P2X4R small interfering RNA (siRNA). We found that P2X4R deletion impeded T98 and U87 cell viability and proliferation, and further studies indicated that cell apoptosis and caspase-3 activity was increased in T98 and U87 cell transfected with P2X4R siRNA. Subsequently, we confirmed that P2X4R silence suppressed brain-derived neurotrophic factor (BDNF), Trk receptor tyrosine kinases (TrkB), and activating transcription factor 4 (ATF4) expression in T98 and U87 cells. And P2X4R siRNA-induced ATF4-expression inhibition dependent on BDNF/TrkB signaling pathway. The impact of P2X4R silence on T98 and U87 cell growth and apoptosis was reversed by ATF4 overexpression. In summary, this study provides the first evidence that P2X4R plays important roles in GBM cell growth and apoptosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
J Neuroinflammation ; 16(1): 271, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847848

RESUMO

BACKGROUND: Neuropathic pain is one of the most debilitating of all chronic pain syndromes. Intrathecal (i.t.) bone marrow stromal cell (BMSC) injections have a favorable safety profile; however, results have been inconsistent, and complete understanding of how BMSCs affect neuropathic pain remains elusive. METHODS: We evaluated the analgesic effect of BMSCs on neuropathic pain in a chronic compression of the dorsal root ganglion (CCD) model. We analyzed the effect of BMSCs on microglia reactivity and expression of purinergic receptor P2X4 (P2X4R). Furthermore, we assessed the effect of BMSCs on the expression of transient receptor potential vanilloid 4 (TRPV4), a key molecule in the pathogenesis of neuropathic pain, in dorsal root ganglion (DRG) neurons. RESULTS: I.t. BMSC transiently but significantly ameliorated neuropathic pain behavior (37.6% reduction for 2 days). We found no evidence of BMSC infiltration into the spinal cord parenchyma or DRGs, and we also demonstrated that intrathecal injection of BMSC-lysates provides similar relief. These findings suggest that the analgesic effects of i.t. BMSC were largely due to the release of BMSC-derived factors into the intrathecal space. Mechanistically, we found that while i.t. BMSCs did not change TRPV4 expression in DRG neurons, there was a significant reduction of P2X4R expression in the spinal cord microglia. BMSC-lysate also reduced P2X4R expression in activated microglia in vitro. Coadministration of additional pharmacological interventions targeting P2X4R confirmed that modulation of P2X4R might be a key mechanism for the analgesic effects of i.t. BMSC. CONCLUSION: Altogether, our results suggest that i.t. BMSC is an effective and safe treatment of neuropathic pain and provides novel evidence that BMSC's analgesic effects are largely mediated by the release of BMSC-derived factors resulting in microglial P2X4R downregulation.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Medula Espinal/metabolismo , Animais , Injeções Espinhais , Masculino , Ratos , Ratos Wistar
20.
J Neuroinflammation ; 15(1): 245, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165876

RESUMO

BACKGROUND: The mechanism underlying migraine chronification remains unclear. Central sensitization may account for this progression. The microglia P2X4 receptor (P2X4R) plays a pivotal role in the central sensitization of inflammatory and neuropathic pain, but there is no information about P2X4R in migraine. Therefore, the aim of this study was to identify the precise role of microglia P2X4R in chronic migraine (CM). METHODS: We used an animal model with recurrent intermittent administration of nitroglycerin (NTG), which closely mimics CM. NTG-induced basal and acute mechanical hypersensitivity were evaluated using the von Frey filament test. Then, we detected Iba1 immunoreactivity (Iba1-IR) and P2X4R expression in the trigeminal nucleus caudalis (TNC). To understand the effect of microglia and P2X4R on central sensitization of CM, we examined whether minocycline, an inhibitor of microglia activation, and 5-BDBD, a P2X4R antagonist, altered NTG-induced mechanical hyperalgesia. In addition, we also evaluated the effect of 5-BDBD on c-Fos and calcitonin gene-related peptide (CGRP) expression within the TNC. RESULTS: Chronic intermittent administration of NTG resulted in acute and chronic basal mechanical hyperalgesia, accompanied with microglia activation and upregulation of P2X4R expression. Minocycline significantly decreased basal pain hypersensitivity but did not alter acute NTG-induced hyperalgesia. Minocycline also reduced microglia activation. 5-BDBD completely blocked the basal and acute hyperalgesia induced by NTG. This effect was associated with a significant inhibition of the NTG-induced increase in c-Fos protein and CGRP release in the TNC. CONCLUSIONS: Our results indicate that blocking microglia activation may have an effect on the prevention of migraine chronification. Moreover, we speculate that the P2X4R may be implicated in the microglia-neuronal signal in the TNC, which contributes to the central sensitization of CM.


Assuntos
Microglia/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/patologia , Nitroglicerina , Receptores Purinérgicos P2X4/metabolismo , Animais , Benzodiazepinonas/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Transtornos de Enxaqueca/complicações , Minociclina/farmacologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/genética , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA