Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 80(5): 862-875.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275888

RESUMO

The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/genética
2.
Mol Cell ; 65(5): 932-940.e6, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190768

RESUMO

ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas de Transporte/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Instabilidade Genômica , Humanos , Proteínas Nucleares/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteômica/métodos , Serina , Transfecção
3.
Apoptosis ; 29(5-6): 816-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281279

RESUMO

Doxorubicin (DOX) is an anthracycline antibiotic used as an antitumor treatment. However, its clinical application is limited due to severe side effects such as cardiotoxicity. In recent years, numerous studies have demonstrated that cellular aging has become a therapeutic target for DOX-induced cardiomyopathy. However, the underlying mechanism and specific molecular targets of DOX-induced cardiomyocyte aging remain unclear. Poly (ADP-ribose) polymerase (PARP) is a family of protein post-translational modification enzymes in eukaryotic cells, including 18 members. PARP-1, the most well-studied member of this family, has become a potential molecular target for the prevention and treatment of various cardiovascular diseases, such as DOX cardiomyopathy and heart failure. PARP-1 and PARP-2 share 69% homology in the catalytic regions. However, they do not entirely overlap in function. The role of PARP-2 in cardiovascular diseases, especially in DOX-induced cardiomyocyte aging, is less studied. In this study, we found for the first time that down-regulation of PARP-2 can inhibit DOX-induced cellular aging in cardiomyocytes. On the contrary, overexpression of PARP-2 can aggravate DOX-induced cardiomyocyte aging and injury. Further research showed that PARP-2 inhibited the expression and activity of SIRT1, which in turn was involved in the development of DOX-induced cardiomyocyte aging and injury. Our findings provide a preliminary experimental basis for establishing PARP-2 as a new target for preventing and treating DOX cardiomyopathy and related drug development.


Assuntos
Senescência Celular , Doxorrubicina , Miócitos Cardíacos , Poli(ADP-Ribose) Polimerases , Sirtuína 1 , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Senescência Celular/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ratos , Cardiotoxicidade/patologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Humanos
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580230

RESUMO

Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.


Assuntos
Aborto Espontâneo/metabolismo , Decídua/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Útero/metabolismo , Animais , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Resultado da Gravidez , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
5.
Mol Biol (Mosk) ; 57(5): 782-791, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752643

RESUMO

The PARP1 and PARP2 proteins are members of the poly(ADP-ribose) polymerase family involved in the regulation of DNA repair and replication, RNA processing, ribosome biogenesis, transcription, cell division, and cell death. PARP1 and PARP2 are promising targets for the development of anticancer drugs and can be used in the treatment of cardiovascular, neurodegenerative, and other disorders. The WGR domain has been shown to play a central role in the functioning of PARP1 and PARP2 proteins. This review considers the mechanisms of functioning of WGR domains in the PARP1 and PARP2 proteins, which have several similar and specialized properties. Understanding these processes is of great interest to fundamental science and can contribute to the development of more effective and selective inhibitors of PARP1 and PARP2.


Assuntos
Antineoplásicos , Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Reparo do DNA
6.
Mol Biol (Mosk) ; 57(2): 254-268, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37000654

RESUMO

Poly(ADP-ribose) (PAR) is a negatively charged polymer, linear or branched, that consists of ADP-ribose monomers. PAR is synthesized by poly(ADP-ribose)polymerase (PARP) enzymes, which are activated upon DNA damage and use nicotinamide adenine dinucleotide (NAD^(+)) as a substrate. The best-studied members of the PARP family, PARP1 and PARP2, are the most important nuclear proteins involved in many cell processes, including the regulation of DNA repair. PARP1 and PARP2 catalyze PAR synthesis and transfer to amino acid residues of target proteins, including autoPARylation. PARP1 and PARP2 are promising targets for chemotherapy in view of their key role in regulating DNA repair. A novel histone PARylation factor (HPF1) was recently discovered to modulate PARP1/2 activity by forming a transient joint active site with PARP1/2. Histones are modified at serine residues in the presence of HPF1. The general mechanism of the interaction between HPF1 and PARP1/2 is a subject of intense research now. The review considers the discovery and classical mechanism of PARylation in higher eukaryotes and the role of HPF1 in the process.


Assuntos
Histonas , Poli ADP Ribosilação , Histonas/genética , Histonas/metabolismo , Poli ADP Ribosilação/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Dano ao DNA , Adenosina Difosfato Ribose/metabolismo
7.
Trends Genet ; 35(6): 412-422, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036342

RESUMO

Accurate copying of DNA during S phase is essential for genome stability and cell viability. During genome duplication, the progression of the DNA replication machinery is challenged by limitations in nucleotide supply and physical barriers in the DNA template that include naturally occurring DNA lesions and secondary structures that are difficult to replicate. To ensure correct and complete replication of the genome, cells have evolved several mechanisms that protect DNA replication forks and thus maintain genome integrity and stability during S phase. One class of enzymes that have recently emerged as important in this process, and therefore as promising targets in anticancer therapy, are the poly(ADP-ribose) polymerases (PARPs). We review here the roles of these enzymes during DNA replication as well as their impact on genome stability and cellular viability in normal and cancer cells.


Assuntos
Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Fase S/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Dano ao DNA , Reparo do DNA , Replicação do DNA , Suscetibilidade a Doenças , Ativação Enzimática , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular , Família Multigênica , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
8.
Biochem Soc Trans ; 50(4): 1169-1177, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35959996

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP1) and 2 (PARP2) are two DNA damage-induced poly (ADP-ribose) (PAR) polymerases in cells and are the targets of PARP inhibitors used for cancer therapy. Strand breaks recruit and activate PARP1 and 2, which rapidly generate PAR from NAD+. PAR promotes the recruitment of other repair factors, relaxes chromatin, and has a role in DNA repair, transcription regulation, and RNA biology. Four PARP1/2 dual inhibitors are currently used to treat BRCA-deficient breast, ovarian, prostate, and pancreatic cancers. In addition to blocking the enzymatic activity of PARP1 and 2, clinical PARP inhibitors extend the appearance of PARP1 and PARP2 on chromatin after damage, termed trapping. Loss of PARP1 confers resistance to PARP inhibitors, suggesting an essential role of trapping in cancer therapy. Yet, whether the persistent PARP1 and 2 foci at the DNA damage sites are caused by the retention of the same molecules or by the continual exchange of different molecules remains unknown. Here, we discuss recent results from quantitative live-cell imaging studies focusing on PARP1 and PARP2's distinct DNA substrate specificities and modes of recruitment and trapping with implications for cancer therapy and on-target toxicities of PARP inhibitors.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Cromatina , Reparo do DNA , Humanos , Masculino , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética
9.
Biochemistry (Mosc) ; 87(4): 331-345, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527371

RESUMO

Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP's family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom's Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5'-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<

Assuntos
Nucleossomos , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/metabolismo , Dano ao DNA , Reparo do DNA
10.
Proc Natl Acad Sci U S A ; 116(29): 14573-14582, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31266892

RESUMO

Androgen receptor (AR) is a ligand-activated transcription factor and a key driver of prostate cancer (PCa) growth and progression. Understanding the factors influencing AR-mediated gene expression provides new opportunities for therapeutic intervention. Poly(ADP-ribose) Polymerase (PARP) is a family of enzymes, which posttranslationally modify a range of proteins and regulate many different cellular processes. PARP-1 and PARP-2 are two well-characterized PARP members, whose catalytic activity is induced by DNA-strand breaks and responsible for multiple DNA damage repair pathways. PARP inhibitors are promising therapeutic agents that show synthetic lethality against many types of cancer (including PCa) with homologous recombination (HR) DNA-repair deficiency. Here, we show that, beyond DNA damage repair function, PARP-2, but not PARP-1, is a critical component in AR transcriptional machinery through interacting with the pioneer factor FOXA1 and facilitating AR recruitment to genome-wide prostate-specific enhancer regions. Analyses of PARP-2 expression at both mRNA and protein levels show significantly higher expression of PARP-2 in primary PCa tumors than in benign prostate tissues, and even more so in castration-resistant prostate cancer (CRPC) tumors. Selective targeting of PARP-2 by genetic or pharmacological means blocks interaction between PARP-2 and FOXA1, which in turn attenuates AR-mediated gene expression and inhibits AR-positive PCa growth. Next-generation antiandrogens act through inhibiting androgen synthesis (abiraterone) or blocking ligand binding (enzalutamide). Selective targeting of PARP-2, however, may provide an alternative therapeutic approach for AR inhibition by disruption of FOXA1 function, which may be beneficial to patients, irrespective of their DNA-repair deficiency status.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Interferente Pequeno/metabolismo , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proteins ; 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764593

RESUMO

The emergence of poly (ADP-ribose) polymerase (PARP) inhibitors targeting a class of PARP enzymes has gained a great interest in cancer therapy. Majority of the PARP inhibitors are not isoform-selective which may cause unwanted off-target effects. In the present study, we explore the molecular mechanism and energy requirements for PARP-2 inhibition. This involves docking studies, frontier molecular orbital analysis, 500 ns molecular dynamics simulation (MD), binding free energy analysis and principal component analysis. The results clearly suggest the importance of hydrogen bonding (Gly429, Gln332, Ser470, Tyr455) and π-π stacking interactions (His428, Tyr455, Tyr462, Phe463, Tyr473) between residues and the inhibitor. Presence of lowest unoccupied molecular orbitals favors π-π stacking interactions and highest occupied molecular orbital orbital favors hydrogen-bonding interactions in the ligands. The stability of most active/PARP-2 complex is confirmed by hydrogen bonding and π-π stacking interaction parameters. Molecular-mechanics Poisson-Boltzmann surface area energy calculations showed that van der Waals and nonpolar solvation energy terms are crucial components for the stable binding of the ligands. Per residue analysis showed that tyrosine, histidine, and phenyl alanine residues are responsible for hydrophobic interactions with the ligands. Four new inhibitors are designed based on this study and the stability of PARP-2/inhibitor complex is validated by MD, density functional theory studies, and ADME/toxicity properties. Information from the present study can serve as a basis for designing new isoform-selective PARP-2 inhibitors.

12.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051087

RESUMO

Embryo implantation is a highly complex process involving many regulatory factors, including several micro RNAs (miRNAs/miRs). One miRNA present in the stromal cells of normal endometrium is miR-149, which targets poly (ADP-ribose) polymerase 2 (PARP-2), a gene involved in endometrial receptivity for trophoblast implantation. However, the precise role of miR-149 in the endometrial receptivity during blastocyst implantation is still unknown. We studied miR-149-dependent PARP-2 regulation during trophoblast attachment to endometrial epithelial cells. Using FISH, we found that miR-149 is expressed in mouse endometrial epithelial and stromal cells at implantation and inter-implantation sites. Endometrial receptivity for embryo implantation and attachment is inhibited by the upregulation of miR-149 in the endometrium. Our RT-PCR analysis revealed downregulation of miR-149 in the implantation region of the uterus during the receptive stage (Day 5, 0500 h, p.c.) in the mouse. Under in-vitro conditions, miR-149 overexpression in human endometrial epithelial cells (hEECs) abrogated the human trophoblastic cells spheroid and mouse blastocyst attachment. Subsequently, miR-149 also regulates transformed human endometrial stromal cell (T-hESCs) decidualization by downregulating PARP-2 and upregulating caspase-8 proteins. Overexpression of miR-149 in hEECs and downregulated PARP-2 protein expression, reconfirming that PARP-2 is a downstream target of miR-149 in endometrial cells as well. miR-149 is also able to alter the expression of caspase-8, another PARP-2 regulator. In conclusion, our data indicate that miR-149 is one of the regulators of endometrial receptivity and decidualization for trophoblast implantation, and it exerts the effects by acting on the downstream targets PARP-2 and caspase-8.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/genética , Poli(ADP-Ribose) Polimerases/genética , Células Estromais/metabolismo , Trofoblastos/fisiologia , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Sequência de Bases , Sítios de Ligação , Biomarcadores , Caspase 8/biossíntese , Caspase 8/genética , Técnicas de Cocultura , Simulação por Computador , Endométrio/citologia , Feminino , Camundongos , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerases/biossíntese , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925170

RESUMO

Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polß, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.


Assuntos
Reparo do DNA/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , DNA/química , Dano ao DNA/fisiologia , DNA Polimerase beta/genética , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
14.
BMC Cancer ; 20(1): 775, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811446

RESUMO

BACKGROUND: PARP inhibitors niraparib and talazoparib are FDA approved for special cases of breast cancer. PARP is an interesting repair protein which is frequently affected in cancer cells. We studied the combined action of talazoparib or niraparib with ionizing radiation in melanoma cells and healthy fibroblasts. METHODS: Homologous recombination (HR) status in six different melanoma cell lines and healthy fibroblasts was assessed. Cell cultures were treated with PARP inhibitors talazoparib or niraparib and ionizing radiation (IR). Apoptosis, necrosis and cell cycle distribution was analyzed via flow cytometry. Cell migration was studied by scratch assays. RESULTS: Studied melanoma cell cultures are HR deficient. Studied healthy fibroblasts are HR proficient. Talazoparib and niraparib have congruent effects within the same cell cultures. In all cell cultures, combined treatment increases cell death and G2/M arrest compared to IR. Combined treatment in melanoma cells distinctly increases G2/M arrest. Healthy fibroblasts are less affected by G2/M arrest. Treatment predominantly decelerates or does not modify migration. In two cell cultures migration is enhanced under the inhibitors. CONCLUSIONS: Although the two PARP inhibitors talazoparib and niraparib appear to be suitable for a combination treatment with ionizing radiation in our in vitro studies, a combination treatment cannot generally be recommended. There are clear interindividual differences in the effect of the inhibitors on different melanoma cells. Therefore, the effect on the cancer cells should be studied prior to a combination therapy. Since melanoma cells increase more strongly than fibroblasts in G2/M arrest, the fractional application of combined treatment should be further investigated.


Assuntos
Quimiorradioterapia/métodos , Fibroblastos/efeitos dos fármacos , Melanoma/terapia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Cutâneas/terapia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia/efeitos adversos , Interações Medicamentosas , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Humanos , Indazóis/farmacologia , Indazóis/uso terapêutico , Melanoma/genética , Melanoma/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Cultura Primária de Células , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
15.
BMC Cancer ; 20(1): 435, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423430

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogenic lethal disorder characterized by the accumulation of abnormal myeloid progenitor cells in the bone marrow which results in hematopoietic failure. Despite various efforts in detection and treatment, many patients with AML die of this cancer. That is why it is important to develop novel therapeutic options, employing strategic target genes involved in apoptosis and tumor progression. METHODS: The aim of the study was to evaluate PARP1, PARP2, PARP3, and TRPM2 gene expression at mRNA level using qPCR method in the cells of hematopoietic system of the bone marrow in patients with acute myeloid leukemia, bone marrow collected from healthy patients, peripheral blood of healthy individuals, and hematopoietic stem cells from the peripheral blood after mobilization. RESULTS: The results found that the bone marrow cells of the patients with acute myeloid leukemia (AML) show overexpression of PARP1 and PARP2 genes and decreased TRPM2 gene expression. In the hematopoietic stem cells derived from the normal marrow and peripheral blood after mobilization, the opposite situation was observed, i.e. TRPM2 gene showed increased expression while PARP1 and PARP2 gene expression was reduced. We observed positive correlations between PARP1, PARP2, PARP3, and TRPM2 genes expression in the group of mature mononuclear cells derived from the peripheral blood and in the group of bone marrow-derived cells. In AML cells significant correlations were not observed between the expression of the examined genes. In addition, we observed that the reduced expression of TRPM2 and overexpression of PARP1 are associated with a shorter overall survival of patients, indicating the prognostic significance of these genes expression in AML. CONCLUSIONS: Our research suggests that in physiological conditions in the cells of the hematopoietic system there is mutual positive regulation of PARP1, PARP2, PARP3, and TRPM2 genes expression. PARP1, PARP2, and TRPM2 genes at mRNA level deregulate in acute myeloid leukemia cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Canais de Cátion TRPM/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Seguimentos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Prognóstico , Canais de Cátion TRPM/genética , Adulto Jovem
16.
Adv Exp Med Biol ; 1241: 47-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32383115

RESUMO

DNA is constantly attacked by different damaging agents; therefore, it requires frequent repair. On the one hand, the base excision repair (BER) system is responsible for the repair of the most frequent DNA lesions. On the other hand, the formation of poly(ADP-ribose) is one of the main DNA damage response reactions that is catalysed by members of the PARP family. PARP1, which belongs to the PARP family and performs approximately 90% of PAR synthesis in cells, could be considered a main regulator of the BER process. Most of the experimental data concerning BER investigation have been obtained using naked DNA. However, in the context of the eukaryotic cell, DNA is compacted in the nucleus, and the lowest compaction level is represented by the nucleosome. Thus, the organization of DNA into the nucleosome impacts the DNA-protein interactions that are involved in BER processes. Poly(ADP-ribosyl)ation (PARylation) is thought to regulate the initiation of the BER process at the chromatin level. In this review, we focus on the mechanisms involved in BER in the nucleosomal context and the potential effect of PARylation, which is catalysed by DNA-dependent PARP1, PARP2 and PARP3 proteins, on this process.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/genética , DNA/metabolismo , Nucleossomos/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Humanos
17.
Biochem Cell Biol ; 97(5): 600-611, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30880404

RESUMO

PARP2 belongs to a family of proteins involved in cell differentiation, DNA damage repair, cellular energy expenditure, and chromatin modeling. In addition to these overlapping functions with PARP1, PARP2 participates in spermatogenesis, T-cell maturation, extra-embryonic endoderm formation, adipogenesis, lipid metabolism, and cholesterol homeostasis. Knowledge of the functions of PARP2 is far from complete, and the mechanism(s) by which the gene and protein are regulated are unknown. In this study, we found that two different mechanisms are used in vitro to regulate PARP2 levels. In the presence of serum, PARP2 is degraded through the ubiquitin-proteasome pathway; however, when serum is removed or dialyzed with a 3.5 kDa molecular cut membrane, PARP2 rapidly becomes sodium dodecyl sulphate- and urea-insoluble. Despite the presence of a putative serum response element in the PARP2 gene, transcription is not affected by serum deprivation, and PARP2 levels are restored when serum is replaced. The loss of PARP2 affects cell differentiation and gene expression linked to cholesterol and lipid metabolism. These observations highlight the critical roles that PARP2 plays under different physiological conditions, and reveal that PARP2 is tightly regulated by distinct pathways.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Poli(ADP-Ribose) Polimerases/sangue , Poli(ADP-Ribose) Polimerases/genética
18.
BMC Cancer ; 19(1): 731, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340767

RESUMO

BACKGROUND: Emerging evidence indicates that Long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) play crucial roles in tumor progression, including hepatocellular carcinoma (HCC). However, whether there is a crosstalk between LncRNA pituitary tumor-transforming 3 (PTTG3P) and miR-383 in HCC remains unknown. This study is designed to explore the underlying mechanism by which LncRNA PTTG3P sponges miR-383 during HCC progression. METHODS: qPCR and Western blot were used to analyze LncRNA PTTG3P, miR-383 and other target genes' expression. CCK-8 assay was performed to examine cell proliferation. Annexin V-PE/PI and PI staining were used to analyze cell apoptosis and cell cycle distribution by flow cytometry, respectively. Transwell migration and invasion assays were used to examine cell migration and invasion abilities. An in vivo xenograft study was performed to detect tumor growth. Luciferase reporter assay and RNA pull-down assay were carried out to detect the interaction between miR-383 and LncRNA PTTG3P. RIP was carried out to detect whether PTTG3P and miR-383 were enriched in Ago2-immunoprecipitated complex. RESULTS: In this study, we found that PTTG3P was up-regulated in HCC tissues and cells. Functional experiments demonstrated that knockdown of PTTG3P inhibited cell proliferation, migration and invasion, and promoted cell apoptosis, acting as an oncogene. Mechanistically, PTTG3P upregulated the expression of miR-383 targets Cyclin D1 (CCND1) and poly ADP-ribose polymerase 2 (PARP2) by sponging miR-383, acting as a competing endogenous RNA (ceRNA). The PTTG3P-miR-383-CCND1/PARP2 axis modulated HCC phenotypes. Moreover, PTTG3P also affected the PI3K/Akt signaling pathway. CONCLUSION: The data indicate a novel PTTG3P-miR-383-CCND1/PARP2 axis in HCC tumorigenesis, suggesting that PTTG3P may be used as a potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ciclina D1/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Oncogenes , Poli(ADP-Ribose) Polimerases/genética , RNA Longo não Codificante/genética , Regulação para Cima
19.
Future Oncol ; 15(15): 1707-1715, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30912451

RESUMO

Poly-ADP-ribosyl polymerase (PARP) enzymes PARP-1 and PARP-2 recognize DNA damage and set off a cascade of cellular mechanisms required for multiple types of DNA damage repair. PARP inhibitors are small molecule mimetics of nicotinamide which bind to PARP's catalytic domain to inhibit poly-ADP-ribosylation (PARylation) of target proteins, including PARP-1 itself. PARP inhibitors olaparib, veliparib, talazoparib, niraparib and rucaparib have predominantly been studied in women with breast or ovarian cancers associated with deleterious germline mutations in BRCA1 and BRCA2 (gBRCA1/2+). The BRCA1 and BRCA2 proteins are involved in DNA repair by homologous recombination. This review will focus on talazoparib, a PARP inhibitor approved by the US FDA for the treatment of metastatic gBRCA1/2+ breast cancers in October 2018.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Ensaios Clínicos como Assunto , Aprovação de Drogas , Feminino , Humanos , Terapia de Alvo Molecular , Ftalazinas/administração & dosagem , Ftalazinas/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Resultado do Tratamento
20.
J Cell Biochem ; 119(7): 5243-5252, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29236322

RESUMO

This study aims to evaluate the effect of the regulatory relationship between microRNA-383 (miR-383) and PARP2 in the cell migration and invasion in human with cervical cancer (CC) via the PI3K-AKT-MTOR signaling pathway. Cancerous tissues and corresponding paracancerous tissues were collected from 115 patients with CC. The positive expression rate of PARP2 was detected by immunohistochemistry. HeLa cells with highest miR-383 expression were selected and assigned into the blank, negative control (NC), miR-383 mimic, miR-383 inhibitor, si-PARP2, and miR-383 inhibitor + si-PARP2 groups. qRT-PCR and Western blot were performed to evaluate the expression of miR-383, PI3K, AKT, mTOR, PARP2, and p70S6K. MTT assay were utilized to measure cell viability. Transwell assay were applied to evaluate cell invasion and metastasis. Dual luciferase reporter assay identified that PARP2 is a target gene of miR-383. Cancerous tissues manifested higher expression of PI3K, AKT, mTOR, PARP2, and p70S6K but lower miR-383 expression than paracancerous tissues. Compared with the blank and NC groups, the miR-383 mimic and si-PARP2 groups had decreased expression of PI3K, AKT, mTOR, PARP2, and p70S6K mRNA and protein. In the miR-383 mimic and si-PARP2 groups, the cell viability, migration, and invasion were descended, in comparison to the blank and NC groups. All above parameters showed an opposite trend in the miR-383 inhibitor group when compared with the blank and NC groups. This study demonstrates that miR-383 could down-regulate PARP2 to protect against CC by inhibiting PI3K-AKT-MTOR signaling pathway.


Assuntos
MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/metabolismo , Adulto , Idoso , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Feminino , Células HeLa , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA