Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474584

RESUMO

The integration of clean energy generation with wastewater treatment holds promise for addressing both environmental and energy concerns. Focusing on photocatalytic hydrogen production and wastewater treatment, this study introduces PdIn/TiO2 catalysts for the simultaneous removal of the pharmaceutical contaminant paracetamol (PTM) and hydrogen production. Physicochemical characterization showed a high distribution of Pd and In on the support as well as a high interaction with it. The Pd and In deposition enhance the light absorption capability and significantly improve the hydrogen evolution reaction (HER) in the absence and presence of paracetamol compared to TiO2. On the other hand, the photoelectroxidation of PTM at TiO2 and PdIn/TiO2 follows the full mineralization path and, accordingly, is limited by the adsorption of intermediate species on the electrode surface. Thus, PdIn-doped TiO2 stands out as a promising photoelectrocatalyst, showcasing enhanced physicochemical properties and superior photoelectrocatalytic performance. This underscores its potential for both environmental remediation and sustainable hydrogen production.

2.
Angew Chem Int Ed Engl ; 62(42): e202306563, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395462

RESUMO

Ternary Pd-In2 O3 /ZrO2 catalysts exhibit technological potential for CO2 -based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd-In2 O3 /ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal-metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction-induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid-base and redox functions for practical implementation.

3.
ChemSusChem ; : e202400543, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691099

RESUMO

CO2 hydrogenation to methanol has emerged as a promising strategy for achieving carbon neutrality and mitigating global warming, in which the supported Pd/In2O3 catalysts are attracting great attention due to their high selectivity. Nonetheless, conventional impregnation methods induce strong metal-support interaction (SMSI) between Pd and In2O3, which leads to the excessive reduction of In2O3 and the formation of undesirable PdIn alloy in hydrogen-rich atmospheres. Herein, we innovatively synthesized Pd/In2O3 nanocatalysts by the electrostatic self-assembly process between surface-modified composite precursors with opposite charges. And the organic ligands concurrently serve as Pd nanoparticle protective agents. The resultant Pd/In2O3 nanocatalyst demonstrates the homogeneous distribution of Pd nanoparticles with controllable sizes on In2O3 supports and the limited formation of PdIn alloy. As a result, it exhibits superior selectivity and stability compared to the counterparts synthesized by the conventional impregnation procedure. Typically, it attains a maximum methanol space-time yield of 0.54 gMeOH h-1gcat -1 (300 °C, 3.5 MPa, 21,000 mL gcat -1 h-1). Notably, the correlation characterization results reveal the significant effect of small-size, highly dispersed Pd nanoparticles in mitigating MSI. These results provide an alternative strategy for synthesizing highly efficient Pd/In2O3 catalysts and offer a new insight into the strong metal-support interaction.

4.
ACS Appl Mater Interfaces ; 15(15): 19653-19664, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015891

RESUMO

Well-dispersed PdIn bimetallic alloy nanoparticles (1-4 nm) were immobilized on mesostructured silica by an in situ capture-alloying strategy, and PdIn-In2O3 interfaces were rationally constructed by changing the In2O3 loading and reduction temperature. The catalytic performance for benzyl alcohol partial oxidation was evaluated, and a catalytic synergy was observed. The Pd-rich PdIn-In2O3 interface is prone to be formed on the catalyst with a low In2O3 loading after being reduced at 300 °C. It was demonstrated that the Pd-rich PdIn-In2O3 interface was more active for benzyl alcohol partial oxidation than In-rich Pd2In3 species, which was likely to be formed at a high reduction temperature (400 °C). The high catalytic activity on the Pd-rich PdIn-In2O3 interface was attributed to the exposure of more Pd-enriched active sites, and an optimized PdIn-In2O3/Pd assemble ratio enhanced the oxygen transfer during partial oxidation. The density functional theory (DFT) calculation confirmed that the Pd-rich Pd3In1(111)-In2O3 interface facilitated the activation of oxygen molecules, resulting in high catalytic activity.

5.
Comput Struct Biotechnol J ; 20: 90-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976314

RESUMO

Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.

6.
Data Brief ; 39: 107626, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34877389

RESUMO

Post-synthesis treatment of bimetallic catalysts in different gas phases resulting in the adsorption-induced segregation is among promising approaches to enhance their activity not compromising selectivity towards a number of low-temperature reactions. Our recently published paper (M.A. Panafidin, A.V. Bukhtiyarov, I.P. Prosvirin, I.A. Chetyrin, A.Yu. Klyushin, A. Knop-Gericke, N.S. Smirnova, P.V. Markov, I.S. Mashkovsky, Y.V. Zubavichus, A.Yu. Stakheev, V.I. Bukhtiyarov, A mild post-synthesis oxidative treatment of Pd-In/HOPG bimetallic catalysts as a tool of their surface structure fine tuning. Appl. Surf. Sci.) reports on Pd-In intermetallic formation regularities and their evolution after storage in air as well as during treatment in oxygen at submillibar pressures. The current paper gives an extended representation of experimental ex situ/in situ synchrotron-based photoelectron spectroscopy (SRPES) and scanning tunnelling microscopy (STM) data used to derive scientific conclusions in the paper quoted above.

7.
Environ Sci Pollut Res Int ; 27(32): 40405-40420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666447

RESUMO

Catalysts of Pd-In supported on activated carbon fiber were synthesized, characterized, and evaluated for the removal of nitrogen oxyanions from water. The work was carried out aiming the development of a green synthesis process, and the studies were accomplished with the following objectives: (a) to evaluate whether catalysts produced by wet impregnation (WI) and autocatalytic deposition (AD) have enough catalytic activity for the removal of oxyanions in water; (b) to determine the efficiency of ion removal using formic acid as a reducing agent; (c) to determine which synthesis method produces less waste. It was found that the two synthesis processes modified the properties of the support and that the distribution of the particles of the metallic phase was of the nanometric order, being these particles found predominantly at the support surface. By using formic acid as a reducing agent, although low nitrate conversions were obtained (32%), a selectivity to N2 higher than 99% was achieved. These findings were attributed to the low decomposition of formic acid on the catalyst surface. The Pd:In (0.45:0.2) catalyst prepared by WI was the most suitable for the catalytic reduction of both nitrate and nitrite oxyanions. Regarding the green point of view of the synthesis method, catalysts prepared by WI generated less waste. Graphical abstract.


Assuntos
Carvão Vegetal , Purificação da Água , Fibra de Carbono , Catálise , Oxirredução
8.
ACS Appl Mater Interfaces ; 11(18): 16838-16846, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938144

RESUMO

Although chemiresistive gas sensors, based on metal-oxide semiconductors, have exhibited particular promise for the monitoring of air pollution, they are often limited because of poor selectivity. In that case, to overcome this issue, according to the essence of the gas-sensing process, the method of reforming the surface reaction path on the surface of the sensing materials was used. Here, we report that Pd nanoparticles supported over the In2O3 composites, featured with a yolk-shell structure, enable the trace detection of carbon disulfide (CS2) gas molecules, which are immensely dangerous to humans and animals. Moreover, the prominent enhancement of the gas response and the ultraselective CS2-sensing characteristic were acquired in comparison with pristine In2O3 sensors. Significantly, density functional theory calculations revealed that the Pd supported on In2O3 greatly facilitates the adsorption capacity to CS2, and the intermediate S, produced by Pd-catalyzed desulfurization reaction, on the Pd/In2O3 surface during the sensing process is a key to achieving a high CS2 gas response as well as ultraselectivity, which is well in agreement with the X-ray photoelectron spectroscopy analysis results. On the basis of these results, a new sensing mechanism model for the CS2-sensing process was put forward.

9.
Environ Technol ; 39(22): 2835-2847, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818018

RESUMO

Water with high concentration of nitrate may cause damage to health and to the environment. This study investigated how concentration, current density, flow, pH, the use of Pd/In catalyst and operating mode (constant current density and constant cell potential) have an influence in the electrochemical reduction of nitrate and in the formation of gaseous compounds using copper electrode. Experiments were performed in two-compartment electrolytic cells separated by a cationic membrane with nitrate model solutions prepared as a surrogate of concentrated brines from membrane desalination plants. The results show that the electroreduction process has potential for reduction of nitrate and that it is influenced by the operational conditions. The best conditions found for the treatment - with satisfactory reduction of nitrate, formation of gaseous compounds and reproducibility - were at nitrate concentrations of 600 and 1000 mg L-1, current density of 1.1 mA cm-2 and without pH control, since in these conditions the production of gaseous compounds is higher than the production of nitrite. When Pd/In catalyst was used, the nitrate reduction was 50% after 6 h of experiment and the predominant product were gaseous compounds. When compared to the experiment without the catalyst, the arrangement with Pd/In was the most efficient one.


Assuntos
Cobre , Nitratos , Catálise , Eletrodos , Reprodutibilidade dos Testes
10.
ACS Nano ; 10(1): 704-12, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26695703

RESUMO

Silicon-organic solar cells based on conjugated polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) on n-type silicon (n-Si) attract wide interest because of their potential for cost-effectiveness and high-efficiency. However, a lower barrier height (Φb) and a shallow built in potential (Vbi) of Schottky junction between n-Si and PEDOT: PSS hinders the power conversion efficiency (PCE) in comparison with those of traditional p-n junction. Here, a strong inversion layer was formed on n-Si surface by inserting a layer of 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), resulting in a quasi p-n junction. External quantum efficiency spectra, capacitance-voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p-n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi. The quasi p-n junction located on the front surface region of silicon substrates improved the short wavelength light conversion into photocurrent. In addition, a derivative perylene diimide (PDIN) layer between rear side of silicon and aluminum cathodes was used to block the holes from flowing to cathodes. As a result, the device with PDIN layer also improved photoresponse at longer wavelength. A champion PCE of 14.14% was achieved for the nanostructured silicon-organic device by combining HAT-CN and PDIN layers. The low temperature and simple device structure with quasi p-n junction promises cost-effective high performance photovoltaic techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA