Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123770, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493862

RESUMO

The widespread detection of per- and polyfluoroalkyl substances (PFAS) in environmental compartments across the globe has raised several health concerns. Destructive technologies that aim to transform these recalcitrant PFAS into less toxic, more manageable products, are gaining impetus to address this problem. In this study, a 9 MeV electron beam accelerator was utilized to treat a suite of PFAS (perfluoroalkyl carboxylates: PFCAs, perfluoroalkyl sulfonates, and 6:2 fluorotelomer sulfonate: FTS) at environmentally relevant levels in water under different operating and water quality conditions. Although perfluorooctanoic acid and perfluorooctane sulfonic acid showed >90% degradation at <500 kGy dose at optimized conditions, a fluoride mass balance revealed that complete defluorination occurred only at/or near 1000 kGy. Non-target and suspect screening revealed additional degradation pathways differing from previously reported mechanisms. Treatment of PFAS mixtures in deionized water and groundwater matrices showed that FTS was preferentially degraded (∼90%), followed by partial degradation of long-chain PFAS (∼15-60%) and a simultaneous increase of short-chain PFAS (up to 20%) with increasing doses. The increase was much higher (up to 3.5X) in groundwaters compared to deionized water due to the presence of PFAS precursors as confirmed by total oxidizable precursor (TOP) assay. TOP assay of e-beam treated samples did not show any increase in PFCAs, confirming that e-beam was effective in also degrading precursors. This study provides an improved understanding of the mechanism of PFAS degradation and revealed that short-chain PFAS are more resistant to defluorination and their levels and regulation in the environment will determine the operating conditions of e-beam and other PFAS treatment technologies.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Elétrons , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Fluorocarbonos/análise , Alcanossulfonatos
2.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124465

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are fluorinated and refractory pollutants that are ubiquitous in industrial wastewater. Photocatalytic destruction of such pollutants with catalysts such as TiO2 and ZnO is an attractive avenue for removal of PFAS, but refined forms of such photocatalysts are expensive. This study, for the first time, utilized milled unrefined raw mineral ilmenite, coupled to UV-C irradiation to achieve mineralization of the two model PFAS compounds perfluorooctanoic acid (PFOA) and perfluoro octane sulfonic acid (PFOS). Results obtained using a bench-scale photocatalytic reactor system demonstrated rapid removal kinetics of PFAS compounds (>90% removal in less than 10 h) in environmentally-relevant concentrations (200-1000 ppb). Raw ilmenite was reused over three consecutive degradation cycles of PFAS, retaining >80% removal efficiency. Analysis of degradation products indicated defluorination and the presence of shorter-chain PFAS intermediates in the initial samples. End samples indicated the disappearance of short-chain PFAS intermediates and further accumulation of fluoride ions, suggesting that original PFAS compounds underwent mineralization due to an oxygen-radical-based photocatalytic destruction mechanism induced by TiO2 present in ilmenite and UV irradiation. The outcome of this study implies that raw ilmenite coupled to UV-C is suitable for cost-effective reactor operation and efficient photocatalytic destruction of PFAS compounds.

3.
J Hazard Mater ; 445: 130419, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455329

RESUMO

6:2 Fluorotelomer sulfonic acid (6:2 FTS) has been identified as an alternative to perfluorooctane sulfonic acid but has been proven to cause potential threats to humans and the environment. In this study, boron nitride (BN) photocatalysis was explored for 6:2 FTS degradation with 100% removal (kobs=1.8 h-1) and desulfurization rate of 100% as well as the defluorination rate of 57.3%. The superior performance of BN was primarily related to oxygen dopants defects (O-dopants). In addition, O-dopants contribution was confirmed by ball-milled BN (B-BN), which introduced more O-dopants and exhibited an increased 6:2 FTS degradation rate of 2.88 h-1. The decomposition of 6:2 FTS was attributed to holes (h+), hydroxyl radicals (•OH), and superoxide (•O2-) and proceeded via two pathways, the hydrogen abstraction from ethyl carbons by •OH and the C-S bond activation by h+ and •OH. To the best of our knowledge, this is the first study demonstrating that h+, •OH, and •O2- played significant roles in the heterogeneous photocatalytic degradation of 6:2 FTS.


Assuntos
Oxigênio , Ácidos Sulfônicos , Humanos , Compostos de Boro/química
4.
Chemosphere ; 321: 138109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787844

RESUMO

The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Oxirredução , Tecnologia , Água
5.
Chemosphere ; 307(Pt 2): 135888, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931254

RESUMO

PER: and polyfluoroalkyl substances (PFAS) are a concerning and unique class of environmentally persistent contaminants with biotoxic effects. Decades of PFAS discharge into water and soil resulted in PFAS bioaccumulation in plants, animals, and humans. PFAS are very stable, and their treatment has become a global environmental challenge. Significant efforts have been made to achieve efficient and complete PFAS mineralization using existing and emerging technologies. Hydrothermal treatments in subcritical and supercritical water have emerged as promising end-of-life PFAS destruction technologies, attracting the attention of scholars, industry, and key stakeholders. This paper reviews the state-of-the-art research on the behavior of PFAS, PFAS precursors, PFAS alternatives, and PFAS-containing waste in hydrothermal processes, including the destruction and defluorination efficiency, the proposed reaction mechanisms, and the environmental impact of these treatments. Scientific literature shows that >99% degradation and >60% defluorination of PFAS can be achieved through subcritical and supercritical water processing. The limitations of current research are evaluated, special considerations are given to the challenges of technology maturation and scale-up from laboratory studies to large-scale industrial application, and potential future technological developments are proposed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Fluorocarbonos/análise , Humanos , Solo , Água , Poluentes Químicos da Água/análise
6.
Chemosphere ; 307(Pt 2): 135800, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931256

RESUMO

Atmospheric plasma offers a viable approach to new water remediation technologies, best suited for the degradation of persistent organic pollutants such as PFAS, per- and polyfluoroalkyl substances. This paper reports on the remarkable performance of a novel RAdial Plasma (RAP) discharge reactor in treating water contaminated with PFAS surfactants, notably the ubiquitous perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). RAP proved to be versatile and robust, performing very well over a wide range of pollutants concentrations. Thus, PFOA degradation was most satisfactory with regard to all critical indicators, kinetics (≥99% PFOA conversion in less than 2.5 min and 30 min in solutions with initial concentrations of 41 µg/L and 41 mg/L, respectively), byproducts, and energy efficiency (G50 greater than 2000 mg/kWh for 41 µg/L - 4.1 mg/L PFOA initial concentrations). Likewise for PFOS as well as for Triton X-100, a common fluorine-free non-ionic surfactant tested to explore the scope of applicability of RAP to the degradation of surfactants in general. The results obtained with RAP compare most favourably with those reported for state-of-art plasma systems in similar experiments. RAP's excellent performance is attributed to the dense network of radial discharges it generates, randomly spread over the entire exposed surface of the liquid thus establishing an extended highly reactive plasma-liquid interface with both strongly reducing and oxidizing species. Mechanistic insight is offered based on the observed degradation products and on available literature data on the surfactants properties and on their plasma induced degradation investigated in previous studies.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Fluorocarbonos/análise , Octoxinol , Poluentes Orgânicos Persistentes , Tensoativos , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 827: 153669, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217058

RESUMO

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are highly recalcitrant anthropogenic chemicals that are ubiquitously present in the environment and are harmful to humans. Typical water and wastewater treatment processes (coagulation, flocculation, sedimentation, and filtration) are proven to be largely ineffective, while adsorption with granular activated carbon (GAC) has been the chief option to capture them from aqueous sources followed by incineration. However, this process is time-consuming, and produces additional solid waste and air pollution. Treatment methods for PFOS and PFOA generally follow two routes: (1) removal from source and reduce the risk; (2) degradation. Emerging technologies focusing on degradation are critically reviewed in this contribution. Various processes such as bioremediation, electrocoagulation, foam fractionation, sonolysis, photocatalysis, mechanochemical, electrochemical degradation, beams of electron and plasma have been developed and studied in the past decade to address PFAS crisis. The underlying mechanisms of these PFAS degradation methods have been categorized. Two main challenges have been identified, namely complexity in large scale operation and the release of toxic byproducts. Based on the literature survey, we have provided a strength-weakness-opportunity-threat (SWOT) analysis and quantitative rating on their efficiency, environmental impact and technology readiness.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA