Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.174
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(7): 1249-1260.e7, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35216667

RESUMO

Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.


Assuntos
Carcinoma Papilar , Carcinoma de Células Renais , Fumaratos , Neoplasias Renais , PTEN Fosfo-Hidrolase , Carcinogênese , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/enzimologia , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cisteína/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sunitinibe/farmacologia
2.
Genes Dev ; 34(7-8): 580-597, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115408

RESUMO

Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/embriologia , Megalencefalia/genética , Neurogênese/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Córtex Cerebral/citologia , Deleção de Genes , Humanos , Megalencefalia/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Organoides/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
EMBO Rep ; 25(7): 2974-3007, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38816514

RESUMO

ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.


Assuntos
COVID-19 , Cálcio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Transdução de Sinais , Replicação Viral , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Animais , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Chlorocebus aethiops , Tratamento Farmacológico da COVID-19 , Células Vero , Feminino , ATPases Transportadoras de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Masculino
4.
Dev Biol ; 509: 11-27, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311163

RESUMO

Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Espermatogônias , Masculino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogênese/genética , Diferenciação Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
5.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35950913

RESUMO

Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.


Assuntos
Acrossomo , Profilinas , Espermátides , Espermatogênese , Acrossomo/metabolismo , Animais , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides
6.
J Virol ; 98(4): e0170123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451084

RESUMO

Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.


Assuntos
Proteínas E4 de Adenovirus , Adenovírus Humanos , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Proteína Supressora de Tumor p53 , Humanos , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Fases de Leitura Aberta/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral
7.
Stem Cells ; 42(6): 567-579, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469899

RESUMO

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , Proteína Wnt3A , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Humanos , Animais , beta Catenina/metabolismo , Fosforilação/efeitos dos fármacos , Camundongos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
8.
Stem Cells ; 42(7): 650-661, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393294

RESUMO

Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.


Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Células-Tronco , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Osteogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Processamento de Proteína Pós-Traducional
9.
Stem Cells ; 42(5): 475-490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427800

RESUMO

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100 µM for 2 hours), SAM (50 and 100 µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of reactive oxygen species and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/day d-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/day by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of forkhead box O3 (FOXO3a) was proved to be associated with the antisenescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.


Assuntos
Senescência Celular , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , S-Adenosilmetionina , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Senescência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL
10.
Hum Genomics ; 18(1): 58, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840185

RESUMO

BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regulação Neoplásica da Expressão Gênica/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade
11.
FASEB J ; 38(14): e23817, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39003633

RESUMO

Excessive apoptosis of intestinal epithelial cells leads to intestinal barrier dysfunction, which is not only one of the pathological features of inflammatory bowel disease (IBD) but also a therapeutic target. A natural plant extract, Ginkgetin (GK), has been reported to have anti-apoptotic activity, but its role in IBD is unknown. This study aimed to explore whether GK has anti-colitis effects and related mechanisms. An experimental colitis model induced by dextran sulfate sodium (DSS) was established, and GK was found to relieve colitis in DSS-induced mice as evidenced by improvements in weight loss, colon shortening, Disease Activity Index (DAI), macroscopic and tissue scores, and proinflammatory mediators. In addition, in DSS mice and TNF-α-induced colonic organoids, GK protected the intestinal barrier and inhibited intestinal epithelial cell apoptosis, by improving permeability and inhibiting the number of apoptotic cells and the expression of key apoptotic regulators (cleaved caspase 3, Bax and Bcl-2). The underlying mechanism of GK's protective effect was explored by bioinformatics, rescue experiments and molecular docking, and it was found that GK might directly target and activate EGFR, thereby interfering with PI3K/AKT signaling to inhibit apoptosis of intestinal epithelial cells in vivo and in vitro. In conclusion, GK inhibited intestinal epithelial apoptosis in mice with experimental colitis, at least in part, by activating EGFR and interfering with PI3K/AKT activation, explaining the underlying mechanism for ameliorating colitis, which may provide new options for the treatment of IBD.


Assuntos
Apoptose , Biflavonoides , Colite , Sulfato de Dextrana , Células Epiteliais , Receptores ErbB , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Masculino , Humanos
12.
FASEB J ; 38(10): e23698, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780613

RESUMO

Prostate cancer (PCa) is a widespread global health concern characterized by elevated rates of occurrence, and there is a need for novel therapeutic targets to enhance patient outcomes. FOXS1 is closely linked to different cancers, but its function in PCa is still unknown. The expression of FOXS1, its prognostic role, clinical significance in PCa, and the potential mechanism by which FOXS1 affects PCa progression were investigated through bioinformatics analysis utilizing public data. The levels of FOXS1 and HILPDA were evaluated in clinical PCa samples using various methods, such as western blotting, immunohistochemistry, and qRT-PCR. To examine the function and molecular mechanisms of FOXS1 in PCa, a combination of experimental techniques including CCK-8 assay, flow cytometry, wound-healing assay, Transwell assay, and Co-IP assay were employed. The FOXS1 expression levels were significantly raised in PCa, correlating strongly with tumor aggressiveness and an unfavorable prognosis. Regulating FOXS1 expression, whether upregulating or downregulating it, correspondingly enhanced or inhibited the growth, migration, and invasion capabilities of PCa cells. Mechanistically, we detected a direct interaction between FOXS1 and HILPDA, resulting in the pathway activation of FAK/PI3K/AKT and facilitation EMT in PCa cells. FOXS1 collaborates with HILPDA to initiate EMT, thereby facilitating the PCa progression through the FAK/PI3K/AKT pathway activation.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Masculino , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Transdução de Sinais , Regulação para Cima , Movimento Celular , Proliferação de Células , Animais , Camundongos , Oncogenes , Prognóstico , Camundongos Nus
13.
FASEB J ; 38(4): e23477, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334424

RESUMO

Liver transplantation (LT) is the only effective method to treat end-stage liver disease. Hepatic ischemia-reperfusion injury (IRI) continues to limit the prognosis of patients receiving LT. Histone deacetylase 6 (HDAC6) is a unique HDAC member involved in inflammation and apoptosis. However, its role and mechanism in hepatic IRI have not yet been reported. We examined HDAC6 levels in liver tissue from LT patients, mice challenged with liver IRI, and hepatocytes subjected to hypoxia/reoxygenation (H/R). In addition, HDAC6 global-knockout (HDAC6-KO) mice, adeno-associated virus-mediated liver-specific HDAC6 overexpressing (HDAC6-LTG) mice, and their corresponding controls were used to construct hepatic IRI models. Hepatic histology, inflammatory responses, and apoptosis were detected to assess liver injury. The molecular mechanisms of HDAC6 in hepatic IRI were explored in vivo and in vitro. Moreover, the HDAC6-selective inhibitor tubastatin A was used to detect the therapeutic effect of HDAC6 on liver IRI. Together, our results showed that HDAC6 expression was significantly upregulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Compared with control mice, HDAC6 deficiency mitigated liver IRI by inhibiting inflammatory responses and apoptosis, whereas HDAC6-LTG mice displayed the opposite phenotype. Further molecular experiments show that HDAC6 bound to and deacetylated AKT and HDAC6 deficiency improved liver IRI by activating PI3K/AKT/mTOR signaling. In conclusion, HDAC6 is a key mediator of hepatic IRI that functions to promote inflammation and apoptosis via PI3K/AKT/mTOR signaling. Targeting hepatic HDAC6 inhibition may be a promising approach to attenuate liver IRI.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Apoptose , Desacetilase 6 de Histona/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
FASEB J ; 38(1): e23340, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031959

RESUMO

Facial nerve regeneration still lacks a well-defined and practical clinical intervention. The survival of central facial motoneuron is a critical component in the successful peripheral facial nerve regeneration. Endogenous GDNF is vital for facial nerve regeneration according to earlier investigations. Nevertheless, the low endogenous GDNF level makes it challenging to achieve therapeutic benefits. Thus, we crushed the main trunk of facial nerve in SD rats to provide a model of peripheral facial paralysis, and we administered exogenous GDNF and Rapa treatments. We observed changes in the animal behavior scores, the morphology of facial nerve and buccinator muscle, the electrophysiological of facial nerve, and the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the facial motoneurons. We discovered that GDNF could boost axon regeneration, hasten the recovery of facial paralysis symptoms and nerve conduction function, and increase the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the central facial motoneurons. Therefore, exogenous GDNF injection into the buccinator muscle can enhance facial nerve regeneration following crushing injury and protect facial neurons via the PI3K/AKT/mTOR signaling pathway. This will offer a fresh perspective and theoretical foundation for the management of clinical facial nerve regeneration.


Assuntos
Axônios , Nervo Facial , Ratos , Animais , Ratos Sprague-Dawley , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína GAP-43 , Regeneração Nervosa/fisiologia , Neurônios Motores/fisiologia , Serina-Treonina Quinases TOR , Transdução de Sinais
15.
EMBO Rep ; 24(12): e49561, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37943703

RESUMO

Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.


Assuntos
Alanina , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/genética , Proteômica , Fagocitose , Bactérias/metabolismo , Palmitatos
16.
J Pathol ; 263(2): 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629245

RESUMO

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Nefroma Mesoblástico , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-raf , Humanos , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Lactente , Proteínas de Fusão Oncogênica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patologia , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proliferação de Células , Rearranjo Gênico , Variante 6 da Proteína do Fator de Translocação ETS , Receptor trkC
17.
Exp Cell Res ; 434(1): 113872, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072303

RESUMO

Autophagy is involved in the entirety of cellular survival, homeostasis and death which becomes more self-evident when its dysregulation is implicated in several pathological conditions. PTEN positively regulates autophagy and like other proteins undergo post-translational modifications. It is crucial to investigate the relationship between PTEN and autophagy as it is generally observed to be negligible in PTEN deficient cancer cells. Here, we have shown that such modifications of PTEN namely sumoylation and phosphorylation upregulates and downregulates autophagy respectively. Transfection of plasmid containing full length PTEN in PTEN-negative prostate cancer cell line PC3, induced autophagy on further starvation. When a sumoylation-deficient mutant of PTEN was transfected and cells were put under similar starvation, a decline in autophagy was observed. On the other hand, cells transfected with phosphorylation-deficient mutant of PTEN showed elevated expression of autophagy. Contrarily, transfection with phosphorylation-mimicking mutant caused reduced expression of autophagy. On further analysis, it was detected that PTEN's association with the plasma membrane was under positive and negative influence from its sumoylation and phosphorylation respectively. This association is integral as it is the foremost site for PTEN to oppose PI3K/AKT pathway and consequently upregulate autophagy. Thus, this study indicates that sumoylation and phosphorylation of PTEN can control autophagy via its cell membrane association.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Masculino , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sumoilação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Autofagia/genética , Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Exp Cell Res ; 437(1): 114010, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508329

RESUMO

Lung adenocarcinoma (LUAD) is a common and deadly form of lung cancer, with high rates of metastasis and unsatisfactory clinical outcomes. Herein, we examined the influence of TMEM158 on the LUAD progression. A combination of bioinformatic analyses was used to assess the TMEM158 expression pattern, prognostic implications, and potential function in LUAD. The levels of TMEM158 and TWIST1 were evaluated in clinical samples from LUAD patients using Western blot analysis and qRT-PCR. To discover the function and underlying molecular pathways of TMEM158 in LUAD, we employed a combination of experimental approaches in vitro, such as flow cytometry analysis and colony formation, Co-IP, CCK-8, Transwell, and wound-healing assays. Elevated expression of TMEM158 in LUAD is associated with increased cancer aggressiveness and a poor prognosis. In vitro experiments demonstrated that high levels of TMEM158 promote cell proliferation, progression through the cell cycle, migration, and invasion while suppressing apoptosis. Knockdown of TMEM158 produced opposite effects. The underlying mechanism involves TMEM158 and TWIST1 directly interacting, stimulating the PI3K/AKT signaling pathway in LUAD cells. This investigation emphasizes the molecular functions of TMEM158 in LUAD progression and proposes targeting it as a promising treatment approach for managing LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Oncogenes , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor
19.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719173

RESUMO

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor de TIE-1 , Transdução de Sinais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
20.
Exp Cell Res ; 435(2): 113933, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296018

RESUMO

Natural killer (NK) cells are triggered by the innate immune response in the tumor microenvironment. The extensive set of stimulating and inhibiting receptors mediates the target recognition of NK cells, and controls the strength of the effector reaction countering specific targeted cells. Yet, lacking major MHC (histocompatibility complex) MICA/B class I chain-related proteins on the membrane of tumor cells results in the failure of NK cell recognition and ability to resist NK cell destruction. Searching databases and molecular docking suggested that in cervical cancer, pterostilbene (3,5-dimethoxy-40-hydroxystilbene; PTS) in Vaccinium corymbosum extract could constrain PI3K/AKT signaling and improving the MICA/B expression. In flow cytometry, MTT assay, viability/cytotoxicity assay, and colony development assays, PTS reduced the development of cervical cancer cells and increased apoptosis. The quantitative real-time PCR (qRT-PCR) and a Western blot indicate that PTS controlled the cytolytic action of NK cells in tumor cells via increasing the MICA/B expression, thus modifying the anti-tumor immune response in cervical cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais , Transdução de Sinais , Citotoxicidade Imunológica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA