Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(6): e30571, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666486

RESUMO

Medium-chain fatty acids (MCFAs) have 6-12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Ácidos Graxos , Proteínas Proto-Oncogênicas c-bcl-2 , Transdução de Sinais , Feminino , Humanos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889220

RESUMO

RNA-binding proteins can regulate nucleotide metabolism and gene expression. UPF3B regulator of nonsense mediated mRNA decay (UPF3B) exhibits dysfunction in cancers. However, its role in the progression of hepatocellular carcinoma (HCC) is still insufficiently understood. Here, we found that UPF3B was markedly upregulated in HCC samples and associated with adverse prognosis in patients. UPF3B dramatically promoted HCC growth both in vivo and in vitro. Mechanistically, UPF3B was found to bind to PPP2R2C, a regulatory subunit of PP2A, boosting its mRNA degradation and activating the PI3K/AKT/mTOR pathway. E2F transcription factor 6 (E2F6) directly binds to the UPF3B promoter to facilitate its transcription. Together, the E2F6/UPF3B/PPP2R2C axis promotes HCC growth through the PI3K/AKT/mTOR pathway. Hence, it could be a promising therapeutic target for treating HCC.

3.
J Gene Med ; 26(1): e3658, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282149

RESUMO

BACKGROUND: Aberrant activation of the phosphatidlinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway has been shown to play an important role in lung adenocarcinoma (LUAD). The effect of KRAS mutations, one of the important signatures of LUAD, on the PI3K/AKT/mTOR pathway in LUAD remains unclear. METHODS: The Seurat package and principal component analysis were used for cell categorization of single-cell RNA sequencing data of LUAD. The AUCell score was used to assess the activity of the PI3K/AKT/mTOR pathway. Meanwhile, using the gene expression profiles and mutation profiles in the The Cancer Genome Atlas dataset, LUAD patients were categorized into KRAS-mutant (KRAS-MT) and KRAS-wild-types (KRAS-WT), and the corresponding enrichment scores were calculated using gene set enrichment analysis analysis. Finally, the subpopulation of cells with the highest pathway activity was identified, the copy number variation profile of this subpopulation was inscribed using the inferCNV package and the CMap database was utilized to make predictions for drugs targeting this subpopulation. RESULTS: There is higher PI3K/AKT/mTOR pathway activity in LUAD epithelial cells with KRAS mutations, and high expression of KRAS, PIK3CA, AKT1 and PDPK1. In particular, we found significantly higher levels of pathway activity and associated gene expression in KRAS-MT than in KRAS-WT. We identified the highest pathway activity on a subpopulation of GRB2+ epithelial cells and the presence of amplified genes within its pathway. Finally, drugs were able to target GRB2+ epithelial cell subpopulations, such as wortmannin, palbociclib and angiogenesis inhibitor. CONCLUSIONS: The present study provides a basic theory for the activation of the PI3K/AKT/mTOR signaling pathway as a result of KRAS mutations.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Adenocarcinoma de Pulmão/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Carcinog ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874176

RESUMO

Aurora kinase B (AURKB) is known to play a carcinogenic role in a variety of cancers, but its underlying mechanism in liver cancer is unknown. This study aimed to investigate the role of AURKB in hepatocellular carcinoma (HCC) and its underlying molecular mechanism. Bioinformatics analysis revealed that AURKB was significantly overexpressed in HCC tissues and cell lines, and its high expression was associated with a poorer prognosis in HCC patients. Furthermore, downregulation of AURKB inhibited HCC cell proliferation, migration, and invasion, induced apoptosis, and caused cell cycle arrest. Moreover, AURKB downregulation also inhibited lung metastasis of HCC. AURKB interacted with DExH-Box helicase 9 (DHX9) and targeted its expression in HCC cells. Rescue experiments further demonstrated that AURKB targeting DHX9 promoted HCC progression through the PI3K/AKT/mTOR pathway. Our results suggest that AURKB is significantly highly expressed in HCC and correlates with patient prognosis. Targeting DHX9 with AURKB promotes HCC progression via the PI3K/AKT/mTOR pathway.

5.
J Transl Med ; 22(1): 93, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263056

RESUMO

BACKGROUND: Pancreatic neuroendocrine neoplasms (pNENs) are relatively rare. Hypoxia and lipid metabolism-related gene acetyl-CoA synthetase 2 (ACSS2) is involved in tumor progression, but its role in pNENs is not revealed. This study showed that hypoxia can upregulate ACSS2, which plays an important role in the occurrence and development of pNENs through lipid metabolism reprogramming. However, the precise role and mechanisms of ACSS2 in pNENs remain unknown. METHODS: mRNA and protein levels of ACSS2 and 3-hydroxy-3-methylglutaryl-CoA synthase1 (HMGCS1) were detected using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The effects of ACSS2 and HMGCS1 on cell proliferation were examined using CCK-8, colony formation assay and EdU assay, and their effects on cell migration and invasion were examined using transwell assay. The interaction between ACSS2 and HMGCS1 was verified by Co-immunoprecipitation (Co-IP) experiments, and the functions of ACSS2 and HMGCS1 in vivo were determined by nude mouse xenografts. RESULTS: We demonstrated that hypoxia can upregulate ACSS2 while hypoxia also promoted the progression of pNENs. ACSS2 was significantly upregulated in pNENs, and overexpression of ACSS2 promoted the progression of pNENs and knockdown of ACSS2 and ACSS2 inhibitor (ACSS2i) treatment inhibited the progression of pNENs. ACSS2 regulated lipid reprogramming and the PI3K/AKT/mTOR pathway in pNENs, and ACSS2 regulated lipid metabolism reprogramming through the PI3K/AKT/mTOR pathway. Co-IP experiments indicated that HMGCS1 interacted with ACSS2 in pNENs. Overexpression of HMGCS1 can reverse the enhanced lipid metabolism reprogramming and tumor-promoting effects of knockdown of ACSS2. Moreover, overexpression of HMGCS1 reversed the inhibitory effect of knockdown of ACSS2 on the PI3K/AKT/mTOR pathway. CONCLUSION: Our study revealed that hypoxia can upregulate the lipid metabolism-related gene ACSS2, which plays a tumorigenic effect by regulating lipid metabolism through activating the PI3K/AKT/mTOR pathway. In addition, HMGCS1 can reverse the oncogenic effects of ACSS2, providing a new option for therapeutic strategy.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Reprogramação Metabólica , Serina-Treonina Quinases TOR , Lipídeos , Acetato-CoA Ligase , Hidroximetilglutaril-CoA Sintase
6.
Cancer Cell Int ; 24(1): 273, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097735

RESUMO

BACKGROUND: The incidence of pancreatic cancer is increasing by years, and the 5-year survival rate is very low. Our team have revealed that Musashi2 (MSI2) could promote aggressive behaviors in pancreatic cancer by downregulating Numb and p53. MSI2 also facilitates EMT in pancreatic cancer induced by EGF through the ZEB1-ERK/MAPK signaling pathway. This study aims to further explore the molecular mechanisms of MSI2-regulated downstream pathways in pancreatic cancer. METHODS: In vitro and in vivo experiments were conducted to investigate the role and mechanism of MSI2 in promoting malignant behaviors of pancreatic cancer through regulation of NLK. RESULTS: Genes closely related to MSI2 were screened from the GEPIA and TCGA databases. We found that NLK showed the most significant changes in mRNA levels with consistent changes following MSI2 interference and overexpression. The high correlation between MSI2 and NLK was also observed at the protein level. Multivariate analysis revealed that both MSI2 and NLK were independent adverse indicators of survival in pancreatic cancer patients, as well as join together. In vitro, silencing or overexpressing NLK altered cell invasion and migration, by regulating EMT and the PI3K-AKT-mTOR pathway. Silencing MSI2 reduced protein expression in the EMT and PI3K-AKT-mTOR pathways, leading to decreased cell invasion and migration abilities, while these effects could be reversed by overexpression of NLK. In vivo, MSI2 silencing inhibited liver metastasis, which could be reversed by overexpressing NLK. Mechanistically, MSI2 directly binds to the translation regulatory region of NLK mRNA at positions 79-87 nt, enhancing its transcriptional activity and exerting post-transcriptional regulatory roles. The analysis of molecular docking showed the close relationship between MSI2 and NLK in pancreatic cancer patients. CONCLUSIONS: Our findings elucidate the regulatory mechanisms of the MSI2-NLK axis in modulating aggressive behaviors of pancreatic cancer cells, which providing new evidence for therapeutic strategies in pancreatic cancer.

7.
Arch Biochem Biophys ; 755: 109983, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561035

RESUMO

Apelin (APLN) is an endogenous ligand of the G protein-coupled receptor APJ (APLNR). APLN has been implicated in the development of multiple tumours. Herein, we determined the effect of APLN on the biological behaviour and underlying mechanisms of cervical cancer. The expression and survival curves of APLN were determined using Gene Expression Profiling Interactive Analysis. The cellular functions of APLN were detected using CCK-8, clone formation, EdU, Transwell assays, flow cytometry, and seahorse metabolic analysis. The underlying mechanisms were elucidated using gene set enrichment analysis and Western blotting. APLN was upregulated in the samples of patients with cervical cancer and is associated with poor prognosis. APLN knockdown decreased the proliferation, migration, and glycolysis of cervical cancer cells. The opposite results were observed when APLN was overexpressed. Mechanistically, we determined that APLN was critical for activating the PI3K/AKT/mTOR pathway via APLNR. APLN receptor inhibitor ML221 reversed the effect of APLN overexpression on cervical cancer cells. Treatment with LY294002, the PI3K inhibitor, drastically reversed the oncological behaviour of APLN-overexpressing C-33A cells. APLN promoted the proliferation, migration, and glycolysis of cervical cancer cells via the PI3K/AKT/mTOR pathway.

8.
Hematol Oncol ; 42(1): e3224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712442

RESUMO

Myelodysplastic syndromes (MDS) patients often experience CD8+ T lymphocytes exhaustion, which plays a crucial role in the development of MDS. However, the specific role of thymocyte selection-associated high mobility box protein (TOX) in the CD8+ T lymphocytes exhaustion in MDS patients remains unclear. In this study, we investigated the role of TOX in CD8+ T lymphocytes exhaustion in patients with MDS. The expression of TOX, inhibitory receptors (IRs), and functional molecules in peripheral blood T lymphocytes of MDS patients and normal controls were detected using flow cytometry. Lentiviral transduction was used to create stable TOX-knockdown CD8+ T lymphocytes, and small interfering RNA (si-RNA) was used to knock down TOX in Jurkat cells. The expression of TOX was found to be significantly higher in CD8+ T lymphocytes of MDS patients compared to normal controls. This was associated with upregulated IRs and reduced expression of functional molecules such as Granzyme and Perforin. Myelodysplastic syndromes patients with higher TOX expression had poor clinical indicators and shorter survival. Knockdown of TOX using sh-RNA partially reverses the exhausted phenotype and enhances the lethality of CD8+ T lymphocytes. Moreover, the knockdown of TOX using si-RNA in Jurkat cells improved cell proliferation activity, down-regulated IRs and activated PI3K/AKT/mTOR signaling pathway. TOX promotes the exhaustion of CD8+ T lymphocytes by inhibiting PI3K/AKT/mTOR pathway, and targeted inhibition of TOX could partially restore the effector functions and activity of CD8+ T lymphocytes.


Assuntos
Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Timócitos/metabolismo , Serina-Treonina Quinases TOR , RNA/metabolismo
9.
Cell Mol Biol Lett ; 29(1): 58, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649803

RESUMO

Non-small cell lung cancer (NSCLC), characterized by low survival rates and a high recurrence rate, is a major cause of cancer-related mortality. Aberrant activation of the PI3K/AKT/mTOR signaling pathway is a common driver of NSCLC. Within this study, the inhibitory activity of (+)-anthrabenzoxocinone ((+)-ABX), an oxygenated anthrabenzoxocinone compound derived from Streptomyces, against NSCLC is demonstrated for the first time both in vitro and in vivo. Mechanistically, it is confirmed that the PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells. Additionally, the augmentation of intracellular ROS levels by (+)-ABX is revealed, further contributing to the inhibition of the signaling pathway and exerting inhibitory effects on tumor growth. The findings presented in this study suggest that (+)-ABX possesses the potential to serve as a lead compound for the treatment of NSCLC.


Assuntos
Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia
10.
Phytother Res ; 38(7): 3736-3762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776136

RESUMO

Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.


Assuntos
Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Compostos Fitoquímicos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos Fitogênicos/farmacologia
11.
Environ Toxicol ; 39(1): 444-456, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792628

RESUMO

Breast cancer mainly affects women and is the second leading cause of cancer-related deaths worldwide. Breast cancer affects women aged 15-59. The current study explored periplocin's anticancer activities against breast cancer MDA-MB-231 cells by down-regulating the PI3K/Akt/mTOR pathway. The MTT assay assessed control-treated and periplocin (2.5-50 µM) treated MDA-MB-231 cell viability. ROS accumulation and apoptosis levels in periplocin-treated cells were examined using DAPI, dual staining, and Annexin V-FITC/PI assays. Caspase enzymes were studied using assay kits. Flow cytometry was used to measure cell cycle distributions. Periplocin-treated cells were analyzed using RT-PCR assays and insilico analyses for the expression of PI3K/Akt/mTOR molecules. The periplocin treatment remarkably reduced the viability of the MDA-MB-231 cells, with an IC50 concentration of 7.5 µM. The fluorescent staining assays revealed a substantial increase in ROS levels and apoptotic events in the periplocin-treated cells. The flow cytometry analysis revealed that periplocin triggered apoptosis and arrested the cell cycle in G0/G1 phases. Periplocin increased the caspase-3, -8, and -9 enzyme activities. In MDA-MB-231 cells, Periplocin decreased PI3K/Akt/mTOR activity, and in silico analysis, Periplocin was inhibited by CDK8-Cyclin C interactions. Periplocin has anticancer properties against breast cancer and may be an effective therapeutic agent for treating breast cancer.


Assuntos
Neoplasias da Mama , Saponinas , Transdução de Sinais , Feminino , Humanos , Apoptose , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR/metabolismo , Células MDA-MB-231 , Saponinas/farmacologia
12.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203787

RESUMO

Lung cancer is considered the number one cause of cancer-related deaths worldwide. Although current treatments initially reduce the lung cancer burden, relapse occurs in most cases; the major causes of mortality are drug resistance and cancer stemness. Recent investigations have provided evidence that shikonin generates various bioactivities related to the treatment of cancer. We used shikonin to treat multi-resistant non-small lung cancer cells (DOC-resistant A549/D16, VCR-resistant A549/V16 cells) and defined the anti-cancer efficacy of shikonin. Our results showed shikonin induces apoptosis in these ABCB1-dependent and independent chemoresistance cancer sublines. Furthermore, we found that low doses of shikonin inhibit the proliferation of lung cancer stem-like cells by inhibiting spheroid formation. Concomitantly, the mRNA level and protein of stemness genes (Nanog and Oct4) were repressed significantly on both sublines. Shikonin reduces the phosphorylated Akt and p70s6k levels, indicating that the PI3K/Akt/mTOR signaling pathway is downregulated by shikonin. We further applied several signaling pathway inhibitors that have been used in anti-cancer clinical trials to test whether shikonin is suitable as a sensitizer for various signaling pathway inhibitors. In these experiments, we found that low doses shikonin and dual PI3K-mTOR inhibitor (BEZ235) have a synergistic effect that inhibits the spheroid formation from chemoresistant lung cancer sublines. Inhibiting the proliferation of lung cancer stem cells is believed to reduce the recurrence of lung cancer; therefore, shikonin's anti-drug resistance and anti-cancer stem cell activities make it a highly interesting molecule for future combined lung cancer therapy.


Assuntos
Imidazóis , Neoplasias Pulmonares , Naftoquinonas , Quinolinas , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Resistencia a Medicamentos Antineoplásicos
13.
Pharm Biol ; 62(1): 214-221, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353262

RESUMO

CONTEXT: Polyporus polysaccharide (PPS), the leading bioactive ingredient extracted from Polyporus umbellatus (Pers.) Fr. (Polyporaceae), has been demonstrated to exert anti-bladder cancer and immunomodulatory functions in macrophages. OBJECTIVE: To explore the effects of homogeneous Polyporus polysaccharide (HPP) on the proliferation and autophagy of bladder cancer cells co-cultured with macrophages. MATERIALS AND METHODS: MB49 bladder cancer cells and RAW264.7 macrophages were co-cultured with or without HPP intervention (50, 100, or 200 µg/mL) for 24 h. The cell counting kit-8 (CCK-8) assay and 5-ethynyl-2″-deoxyuridine (EdU) staining evaluated MB49 cell proliferation. Monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM) observed autophagosomes. Western blotting detected the expression levels of autophagy-related proteins and PI3K/Akt/mTOR pathway proteins. RESULTS: HPP inhibited the proliferation of MB49 cells co-cultured with RAW264.7 cells but not MB49 cells alone. HPP altered the expression of autophagy-related proteins and promoted the formation of autophagosomes in MB49 cells in the co-culture system. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) not only antagonized HPP-induced autophagy but also attenuated the inhibitory effects of HPP on MB49 cell proliferation in the co-culture system. HPP or RAW264.7 alone was not sufficient to induce autophagy in MB49 cells. In addition, HPP suppressed the protein expression of the PI3K/Akt/mTOR pathway in MB49 cells in the co-culture system. DISCUSSION AND CONCLUSIONS: HPP induced bladder cancer cell autophagy by regulating macrophages in the co-culture system, resulting in the inhibition of cancer cell proliferation. The PI3K/Akt/mTOR pathway was involved in HPP-induced autophagy in the co-culture system.


Assuntos
Polyporus , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Polyporus/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proliferação de Células , Polissacarídeos/farmacologia , Proteínas Relacionadas à Autofagia/farmacologia
14.
J Cell Mol Med ; 27(16): 2437-2447, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436074

RESUMO

Proteasome 26S subunit ATPase 4 (PSMC4) could regulate cancer progression. However, the function of PSMC4 in prostate carcinoma (PCa) progression requires further clarification. In the study, PSMC4 and chromobox 3 (CBX3) levels were verified by TCGA data and tissue microarrays. Cell counting kit-8, cell apoptosis, cell cycle, wound healing, transwell and xenograft tumour model assays were performed to verify biological functions of PSMC4 in PCa. RNA-seq, PCR, western blotting and co-IP assays were performed to verify the mechanism of PSMC4. Results showed that PSMC4 level was significantly increased in PCa tissues, and patients with PCa with a high PSMC4 level exhibited shorter overall survival. PSMC4 knockdown markedly inhibited cell proliferation, cell cycle and migration in vitro and in vivo, and significantly promoted cell apoptosis. Then further study revealed that CBX3 was a downstream target of PSMC4. PSMC4 knockdown markedly reduced CBX3 level, and inhibited PI3K-AKT-mTOR signalling. CBX3 overexpression markedly promoted epidermal growth factor receptor (EGFR) level. Finally, PSMC4 overexpression showed reverse effect in DU145 cells, and the effects of PSMC4 overexpression on cell proliferation, migration and clonal formation were rescued by the CBX3 knockdown, and regulated EGFR-PI3K-AKT-mTOR signalling. In conclusion, PSMC4 could regulate the PCa progression by mediating the CBX3-EGFR-PI3K-AKT-mTOR pathway. These findings provided a new target for PCa treatment.


Assuntos
Carcinoma , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Cromossômicas não Histona , Receptores ErbB/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Biochem Biophys Res Commun ; 643: 111-120, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592584

RESUMO

Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Lesões por Radiação , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Apoptose , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle
16.
J Transl Med ; 21(1): 323, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179292

RESUMO

BACKGROUND: Pericyte-myofibroblast transition (PMT) has been confirmed to contribute to renal fibrosis in several kidney diseases, and transforming growth factor-ß1 (TGF-ß1) is a well-known cytokine that drives PMT. However, the underlying mechanism has not been fully established, and little is known about the associated metabolic changes. METHODS: Bioinformatics analysis was used to identify transcriptomic changes during PMT. PDGFRß + pericytes were isolated using MACS, and an in vitro model of PMT was induced by 5 ng/ml TGF-ß1. Metabolites were analyzed by ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS). 2-Deoxyglucose (2-DG) was used to inhibit glycolysis via its actions on hexokinase (HK). The hexokinase II (HKII) plasmid was transfected into pericytes for HKII overexpression. LY294002 or rapamycin was used to inhibit the PI3K-Akt-mTOR pathway for mechanistic exploration. RESULTS: An increase in carbon metabolism during PMT was detected through bioinformatics and metabolomics analysis. We first detected increased levels of glycolysis and HKII expression in pericytes after stimulation with TGF-ß1 for 48 h, accompanied by increased expression of α-SMA, vimentin and desmin. Transdifferentiation was blunted when pericytes were pretreated with 2-DG, an inhibitor of glycolysis. The phosphorylation levels of PI3K, Akt and mTOR were elevated during PMT, and after inhibition of the PI3K-Akt-mTOR pathway with LY294002 or rapamycin, glycolysis in the TGF-ß1-treated pericytes was decreased. Moreover, PMT and HKII transcription and activity were blunted, but the plasmid-mediated overexpression of HKII rescued PMT inhibition. CONCLUSIONS: The expression and activity of HKII as well as the level of glycolysis were increased during PMT. Moreover, the PI3K-Akt-mTOR pathway regulates PMT by increasing glycolysis through HKII regulation.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hexoquinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pericitos/metabolismo , Miofibroblastos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo , Glicólise
17.
Exp Eye Res ; 226: 109340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476400

RESUMO

Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.


Assuntos
RNA Longo não Codificante , Retinoblastoma , Animais , Humanos , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Exp Cell Res ; 417(2): 113192, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568072

RESUMO

BACKGROUND: The treatment of acute myeloid leukemia (AML) is developing towards "targeted therapy", which faces challenges such as low sensitivity and drug resistance. Therefore, targeted drugs need to be used in combination with other drugs to overcome clinical problems. OBJECTIVE: AML cells and animal models were used to determine the synergistic anti-leukemic effect of Dactolisib (BEZ235) and Venetoclax (ABT199) and explore its mechanism. METHODS: In vitro experiments, we used cell counting kit-8 (CCK8), flow cytometry, real-time quantitative PCR (qPCR), and Western blot to detect the anti-leukemic effects of ABT199 and BEZ235. In vivo experiments, female nude mice were injected subcutaneously with THP-1 cells to form tumors, evaluate the combined effect of ABT199 and BEZ235 by indicators such as tumor size, tumor weight, Ki67 and cleaved-Caspase3 staining. The mice's body weight and HE staining were used to evaluate the liver injury and adverse drug reactions. RESULTS: The combination of BEZ235 and ABT199 has a synergistic effect through promoting apoptosis and inhibiting proliferation. The BEZ235 increased the drug sensitivity of ABT199 by reducing the MCL-1 protein synthesis and promoted the degradation of MCL-1 protein, which is considered as the mechanism of reversing ABT199 resistance. Furthermore, the BEZ235 and ABT199 can synergistically enhance the inhibition of PI3K/AKT/mTOR pathway. CONCLUSION: The combination of BEZ235 and ABT199 exhibits a synergistic anti-tumor effect in AML by down-regulating MCL-1 protein.


Assuntos
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sulfonamidas , Serina-Treonina Quinases TOR/metabolismo
19.
Oral Dis ; 29(8): 3183-3192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35689522

RESUMO

BACKGROUND: Accumulating evidence indicates that curcumin (CUR) has anticancer properties in various cancers including oral squamous cell carcinoma (OSCC), but CUR is greatly restricted in clinical studies and applications due to its low bioavailability. Interestingly, the bioavailability of CUR was found to be significantly improved using loaded lipid nanoemulsions (NEs). OBJECTIVES: To investigate the effect of CUR-NEs on cell proliferation of OSCC HSC-3 cells in vitro, and explore the potential mechanism of this effect in a preliminary study. RESULTS: CUR-NEs exhibited significantly cytotoxic effects on OSCC cells in a dose-dependent manner, compared with the control. The percentage of cells in proliferative phases (S + G2/M) was gradually decreased in a dose- or time-dependent manner caused by CUR-NEs. Moreover, CUR-NEs downregulated the protein expression of PI3K/Akt/mTOR and upregulated the expression of miR-199a that targeted PI3K in a dose- or time-dependent manner in OSCC cells. Importantly, CUR-NEs cloud effectively counteract the influence on cell proliferation of OSCC cells and the proliferative phases of cell cycle caused by miR-199a inhibitor a time-dependent manner. CONCLUSIONS: This in vitro preliminary study indicated that CUR-NEs may be an effective therapeutic agent for OSCC. Such effects could be related to inhibition of OSCC cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR , Regulação para Cima , Nanoestruturas/química , Emulsões
20.
Gynecol Endocrinol ; 39(1): 2258422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855244

RESUMO

OBJECTIVE: Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a major cause of infertility in female worldwide. Excessive apoptosis and impaired autophagy in ovarian granulosa cells are the main pathological mechanisms of POF. The total flavonoids from semen cuscutae (TFSC) are often used in the treatment of gynecological endocrine disorders. In addition, low intensity pulsed ultrasound (LIPUS) is report as an effective method to improve ovarian function. This study aims to investigate the protective effect of POF by the combined use of TFSC and LIPUS. METHODS: POF rats model and granulosa cell model were successfully induced by tripterygium glycosides and cyclophosphamide, respectively. After that, model rats and cells received TFSC plus LIPUS administration. Then ovarian histomorphology, senescence, estrus cycle, and serum sex hormone levels were detected in rats. Ovarian tissue and granulosa cells autophagy and apoptosis levels were also assessed. RESULTS: Disturbed sex hormone levels, atrophied and senescent ovaries, and abnormal estrous cycle were found in POF rats. Meanwhile, cell autophagy was inhibited and cell apoptosis was activated in POF ovarian tissue and granulosa cells. However, TFSC combined with LIPUS improved these changes, and this combination treatment exhibited synergistic effects. The abnormal expression of the cell apoptosis-, autophagy-, and PI3K/AKT/mTOR signaling pathway-related proteins were also improved by combination treatment. CONCLUSION: The study found that the combination of TFSC and LIPUS can alleviate POF by modulating cell autophagy and apoptosis. The findings may provide a viable scientific basis for POF treatment.


Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Insuficiência Ovariana Primária , Sêmen , Ondas Ultrassônicas , Animais , Feminino , Humanos , Ratos , Apoptose , Hormônios Esteroides Gonadais/efeitos adversos , Células da Granulosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Ovariana Primária/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA