Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
2.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768895

RESUMO

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Microscopia Crioeletrônica , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Mutação de Sentido Incorreto , Nanoestruturas/química , Rim Policístico Autossômico Dominante/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Canais de Cátion TRPP/genética
3.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684364

RESUMO

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Assuntos
Membro 2 da Família 12 de Carreador de Soluto , Medula Espinal , Simportadores , Animais , Camundongos , Medula Espinal/metabolismo , Feminino , Masculino , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Cotransportadores de K e Cl- , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Cloretos/metabolismo , Cloretos/líquido cefalorraquidiano , Cloretos/farmacologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
4.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259828

RESUMO

Polycystins are a family of conserved ion channels, mutations of which lead to one of the most common human genetic disorders, namely, autosomal dominant polycystic kidney disease. Schizosacchromyces pombe possesses an essential polycystin homologue, Pkd2, which directs Ca2+ influx on the cell surface in response to membrane tension, but its structure remains unsolved. Here, we analyzed the structure-function relationship of Pkd2 based on its AlphaFold-predicted structure. Pkd2 consists of three domains, the extracellular lipid-binding domain (LBD), nine-helix transmembrane domain (TMD) and C-terminal cytoplasmic domain (CCD). Our genetic and microscopy data revealed that LBD and TMD are essential for targeting Pkd2 to the plasma membrane from the endoplasmic reticulum. In comparison, CCD ensures the polarized distribution of Pkd2 by promoting its internalization and preventing its clustering in the eisosome, a caveolae-like membrane compartment. The domains of Pkd2 and their functions are conserved in other fission yeast species. We conclude that both extracellular and cytoplasmic domains of Pkd2 are crucial for its intracellular trafficking and function. We propose that mechanosensitive channels can be desensitized through either internalization or clustering in low-tension membrane compartments.


Assuntos
Rim Policístico Autossômico Dominante , Schizosaccharomyces , Análise por Conglomerados , Canais Iônicos/metabolismo , Rim Policístico Autossômico Dominante/genética , Domínios Proteicos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
5.
Dev Dyn ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984461

RESUMO

BACKGROUND: Mouse nodal immotile cilia mechanically sense the bending direction for left-right (L-R) determination and activate the left-side-specific signaling cascade, leading to increased Nodal activity. Asymmetric distribution of Pkd2, a crucial channel for L-R determination, on immotile cilia has been reported recently. However, the causal relationship between the asymmetric Pkd2 distribution and direction-dependent flow sensing is not well understood. Furthermore, the underlying molecular mechanism directing this asymmetric Pkd2 distribution remains unclear. RESULTS: The effects of several recombinant proteins and inhibitors on the Pkd2 distribution were analyzed using super-resolution microscopy. Notably, bone morphogenetic protein 4 (BMP4) affected the Pkd2 distribution. Additionally, three-dimensional manipulation of nodal immotile cilia using optical tweezers revealed that excess BMP4 caused defects in the mechanosensing ability of the cilia. CONCLUSIONS: Experimental data together with model calculations suggest that BMP4 regulates the asymmetric distribution of Pkd2 in nodal immotile cilia, thereby affecting the ability of these cilia to sense the bending direction for L-R determination. This study, for the first time, provides insight into the relationship between the asymmetric protein distribution in cilia and their function.

6.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099006

RESUMO

Polycystins are conserved mechanosensitive channels whose mutations lead to the common human renal disorder autosomal dominant polycystic kidney disease (ADPKD). Previously, we discovered that the plasma membrane-localized fission yeast polycystin homolog Pkd2p is an essential protein required for cytokinesis; however, its role remains unclear. Here, we isolated a novel temperature-sensitive pkd2 mutant, pkd2-B42. Among the strong growth defects of this mutant, the most striking was that many mutant cells often lost a significant portion of their volume in just 5 min followed by a gradual recovery, a process that we termed 'deflation'. Unlike cell lysis, deflation did not result in plasma membrane rupture and occurred independently of cell cycle progression. The tip extension of pkd2-B42 cells was 80% slower than that of wild-type cells, and their turgor pressure was 50% lower. Both pkd2-B42 and the hypomorphic depletion mutant pkd2-81KD partially rescued mutants of the septation initiation network (SIN), a yeast Hippo-related signaling pathway, by preventing cell lysis, enhancing septum formation and doubling the number of Sid2p and Mob1p molecules at the spindle pole bodies. We conclude that Pkd2p promotes cell size expansion during interphase by regulating turgor pressure and antagonizes the SIN during cytokinesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Canais de Potencial de Receptor Transitório , Ciclo Celular/fisiologia , Humanos , Rim Policístico Autossômico Dominante/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
7.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884744

RESUMO

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Assuntos
Mutação , Humanos , Síndrome de Heterotaxia/genética , Cardiopatias Congênitas/genética , Situs Inversus/genética
8.
Biochem Genet ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971859

RESUMO

Polycystic kidney disease (PKD) is a common inherited disease characterized by multiple cysts in kidneys and various extra renal manifestations. Molecular diagnosis plays a crucial role in confirming both the clinical diagnosis and preimplantation genetic diagnosis furthermore, selecting appropriate treatment options. This study aimed to expand the understanding of genetic mutations in patients with polycystic kidney disease and to improve the management of patients. The study included 92 patients with a clinical diagnosis of PKD based on renal ultrasound criteria. Targeted next-generation sequencing was performed using a custom panel kit. Of the 92 patients included in the study, pathogenic/likely pathogenic variants of the PKD1, PKD2 genes were detected in 37 patients (40.2%), while 8 patients (8.6%) had variants with uncertain clinical significance. After the additional assessment of pathogenic/likely pathogenic variants, it was found that 15 of the variants in PKD1 and 2 of the variants in PKD2 have not been reported in the literature previously. Additionally, pathogenic variants, 5 of which were novel, have been identified in different genes in 8 patients. This study presented the largest patient cohort conducted in Turkey. These findings were significant in expanding our understanding of the genetic variations associated with polycystic kidney disease. The study contributed the literature data on polycystic kidney disease by reporting important findings that could pave the way for further investigations in the diagnosis, treatment, and management of the affected patients.

9.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474184

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/metabolismo , Mutação , Rim/metabolismo , Cistos/metabolismo , Instabilidade Cromossômica
10.
BMC Genomics ; 24(1): 407, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468838

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic multisystem disease caused primarily by mutations in the PKD1 gene or PKD2 gene. There is increasing evidence that some of these variants, which are described as missense, synonymous or nonsense mutations in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. RESULTS: This study aimed to determine the effect of these PKD1 and PKD2 variants on exon splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 19 candidate single nucleotide alterations, 11 variants distributed in PKD1 (c.7866C > A, c.7960A > G, c.7979A > T, c.7987C > T, c.11248C > G, c.11251C > T, c.11257C > G, c.11257C > T, c.11346C > T, and c.11393C > G) and PKD2 (c.1480G > T) were identified to result in exon skipping. CONCLUSIONS: We confirmed that 11 variants in the gene of PKD1 and PKD2 affect normal splicing by interfering the recognition of classical splicing sites or by disrupting exon splicing enhancers and generating exon splicing silencers. This is the most comprehensive study to date on pre-mRNA splicing of exonic variants in ADPKD-associated disease-causing genes in consideration of the increasing number of identified variants in PKD1 and PKD2 gene in recent years. These results emphasize the significance of assessing the effect of exon single nucleotide variants in ADPKD at the mRNA level.


Assuntos
Rim Policístico Autossômico Dominante , Piruvato Desidrogenase Quinase de Transferência de Acetil , Precursores de RNA , Humanos , Éxons , Mutação , Rim Policístico Autossômico Dominante/genética , Precursores de RNA/metabolismo , Splicing de RNA , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética
11.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34345895

RESUMO

Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Canais de Cálcio , Túbulos Renais/metabolismo , Camundongos , Rim Policístico Autossômico Dominante/genética , Receptores de Superfície Celular , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
12.
J Assist Reprod Genet ; 40(4): 783-792, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773205

RESUMO

OBJECTIVE: Given that the molecular diagnosis of autosomal dominant polycystic kidney disease (ADPKD) is complicated, we aim to apply blocker displacement amplification (BDA) on the mutational screening of PKD1 and PKD2. METHODS: A total of 35 unrelated families with ADPKD were recruited from the Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University (Chongqing, China), from October 2018 to October 2021. Long-range PCR followed by next-generation sequencing were applied for resequencing of PKD1 and PKD2, and the putatively disease-causative variants were verified with BDA. The effects of ADPKD on male and female infertility and the factors influencing the clinical outcomes of preimplantation genetic testing (PGT) for ADPKD were investigated. RESULTS: A total of 26 PKD1 variants and 5 PKD2 variants were identified, of which 13 were newly discovered. The BDA system worked effectively for eliminating the interference of pseudogenes in genetic testing of PKD1 (1-33 exons) with different concentrations of genome DNA. The females with ADPKD have no specific infertility factors, while 68.2% of the affected men were with abnormal sperm concentration and/or motility with an indefinite genotype-phenotype relationship. As for PGT, the fertilization rate of couples with the male partner having ADPKD was relatively lower compared to those with the female partner being affected. The ADPKD patients receiving PGT usually achieved high rates of live births. CONCLUSION: These findings expanded the variant spectrum of PKD genes and emphasized the application prospect of blocker displacement amplification on PKD1-related genetic diagnosis.


Assuntos
Rim Policístico Autossômico Dominante , Masculino , Feminino , Humanos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Análise Mutacional de DNA/métodos , Sêmen , Testes Genéticos , Mutação/genética
13.
Cell Tissue Bank ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368142

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNs) act crucial role in chemosensory and mechanosensory function in spinal cord. Recently, CSF-cNs were found to be an immature neuron and may be involved in spinal cord injury recovery. But how to culture it and explore its function in vitro are not reported in previous research. Here, we first reported culture and identification of CSF-cNs in vitro. We first established a protocol for in vitro culture of CSF-cNs from the cervical spinal cord of mice within 24 h after birth. Polycystic kidney disease 2-like 1 (PKD2L1)+ cells were isolated by fluorescence-activated cell sorting and expressed the neuron marker ß-tubulin III and CSF-cNs marker GABA. Intriguingly, PKD2L1+ cells formed neurosphere and expressed neural stem cell markers Nestin, Sox2 and GFAP. Thus, our research provided culture and isolation of CSF-cNs and this facilitate the investigation the CSF-cNs function in vitro.

14.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29572244

RESUMO

Primary cilium structure and function relies on control of ciliary membrane homeostasis, regulated by membrane trafficking processes that deliver and retrieve ciliary components at the periciliary membrane. However, the molecular mechanisms controlling ciliary membrane establishment and maintenance, especially in relation to endocytosis, remain poorly understood. Here, using Caenorhabditis elegans, we describe closely linked functions for early endosome (EE) maturation factors RABS-5 (Rabenosyn-5) and VPS-45 (VPS45) in regulating cilium length and morphology, ciliary and periciliary membrane volume, and ciliary signalling-related sensory behaviour. We demonstrate that RABS-5 and VPS-45 control periciliary vesicle number and levels of select EE/endocytic markers (WDFY-2, CAV-1) and the ciliopathy membrane receptor PKD-2 (polycystin-2). Moreover, we show that CAV-1 (caveolin-1) also controls PKD-2 ciliary levels and associated sensory behaviour. These data link RABS-5 and VPS-45 ciliary functions to the processing of periciliary-derived endocytic vesicles and regulation of ciliary membrane homeostasis. Our findings also provide insight into the regulation of PKD-2 ciliary levels via integrated endosomal sorting and CAV-1-mediated endocytosis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caveolina 1/genética , Membrana Celular/genética , Cílios/genética , Cílios/metabolismo , Canais de Cátion TRPP/genética , Proteínas de Transporte Vesicular/genética
15.
Development ; 146(9)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31036544

RESUMO

Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cílios/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Transcrição Forkhead/metabolismo , Gástrula/metabolismo , Gastrulação/fisiologia , Mesoderma/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPP/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
16.
Proc Natl Acad Sci U S A ; 116(52): 27095-27104, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822608

RESUMO

PKD2 (polycystin-2, TRPP1) channels are expressed in a wide variety of cell types and can regulate functions, including cell division and contraction. Whether posttranslational modification of PKD2 modifies channel properties is unclear. Similarly uncertain are signaling mechanisms that regulate PKD2 channels in arterial smooth muscle cells (myocytes). Here, by studying inducible, cell-specific Pkd2 knockout mice, we discovered that PKD2 channels are modified by SUMO1 (small ubiquitin-like modifier 1) protein in myocytes of resistance-size arteries. At physiological intravascular pressures, PKD2 exists in approximately equal proportions as either nonsumoylated (PKD2) or triple SUMO1-modifed (SUMO-PKD2) proteins. SUMO-PKD2 recycles, whereas unmodified PKD2 is surface-resident. Intravascular pressure activates voltage-dependent Ca2+ influx that stimulates the return of internalized SUMO-PKD2 channels to the plasma membrane. In contrast, a reduction in intravascular pressure, membrane hyperpolarization, or inhibition of Ca2+ influx leads to lysosomal degradation of internalized SUMO-PKD2 protein, which reduces surface channel abundance. Through this sumoylation-dependent mechanism, intravascular pressure regulates the surface density of SUMO-PKD2-mediated Na+ currents (INa) in myocytes to control arterial contractility. We also demonstrate that intravascular pressure activates SUMO-PKD2, not PKD2, channels, as desumoylation leads to loss of INa activation in myocytes and vasodilation. In summary, this study reveals that PKD2 channels undergo posttranslational modification by SUMO1, which enables physiological regulation of their surface abundance and pressure-mediated activation in myocytes and thus control of arterial contractility.

17.
Vascular ; : 17085381221124707, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049120

RESUMO

BACKGROUND: Vascular abnormalities, including dissections and aneurysms, can be found in patients with autosomal dominant kidney disease (ADPKD). While intracranial aneurysms have been reported in 10%-25% of ADPCKD, occurrences at other locations are exceedingly rare. METHOD: This is a first case report of a patient with ADPCKD who presented with a rupture of the left external carotid artery pseudoaneurysm. CONCLUSION: Rupture of a carotid artery aneurysm is rare with potentially high morbidity. An endovascular and surgical approach are effective strategies for successful management that depends on etiology, location, and surgeon experience.

18.
J Formos Med Assoc ; 121(11): 2331-2337, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35370030

RESUMO

Hereditary cerebral cavernous malformations (CCMs) are characterized by clustered dilated capillary-like vessels in the brain. Autosomal dominant polycystic kidney disease (PKD) is characterized by renal cysts and extra-renal abnormalities. We report a Taiwanese family in which the index case exhibited coexisting phenotypes of both CCMs and PKD. The index case was a 55-year-old woman with known PKD who developed an intracerebral hemorrhage (ICH) in the right medulla. Neuroimaging revealed numerous microbleeds in the bilateral cerebrum and cerebellum. Radiological CCMs were suspected given the absence of other imaging markers of small vessel disease. A comprehensive panel of 183 cerebral vascular malformation genes were investigated through genome sequencing. A novel CCM2 frameshift variant (c.607_608delCT, p.Leu203Valfs∗53) causing a pathogenic premature stop codon, and a known PKD2 nonsense variant (c.2407C > T, p.Arg803∗), were found. Segregation analysis revealed that four siblings were affected by either isolated aforementioned PKD2 or CCM2 variant. Notably, radiological CCMs were exclusively found in siblings who had this CCM2 variant, and bilateral internal carotid artery aneurysms were restricted to one sibling who had the PKD2 variant but not the CCM2 variant. Our study expands the genetic spectrum of CCM2 and demonstrates unambiguous cosegregation of CCM2 and PKD2 variants with their respective phenotypes.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Doenças Renais Policísticas , Proteínas de Transporte/genética , Códon sem Sentido , Testes Genéticos , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Mutação , Doenças Renais Policísticas/genética
19.
Medicina (Kaunas) ; 58(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422197

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a'a at the 3'UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3'UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.


Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Adulto , Humanos , Regiões 3' não Traduzidas , Proteínas de Membrana/genética , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico , Arábia Saudita , Canais de Cátion TRPP/genética , Sequenciamento do Exoma
20.
Am J Physiol Renal Physiol ; 320(6): F1165-F1173, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969696

RESUMO

In 15% of cases, autosomal dominant polycystic kidney disease arises from defects in polycystin-2 (PC2). PC2 is a member of the polycystin transient receptor potential subfamily of cation-conducting channels and is expressed in the endoplasmic reticulum and primary cilium of renal epithelial cells. PC2 opposes a procystogenic influence of the cilium, and it has been proposed that this beneficial effect is mediated in part by a flow of Ca2+ through PC2 channels into the primary cilium. However, previous efforts to determine the permeability of PC2 channels to Ca2+ have yielded widely varying results. Here, we report the mean macroscopic Ca2+ influx through native PC2 channels in the primary cilia of mIMCD-3 cells, which are derived from the murine inner medullary collecting duct. Under conditions designed to isolate inward Ca2+ currents, a small inward Ca2+ current was detected in cilia with active PC2 channels but not in cilia lacking those channels. The current was activated by the addition of 10 µM internal Ca2+, which is known to activate ciliary PC2 channels. It was blocked by 10 µM isosakuranetin, which blocks the same channels. On average, the current amplitude was -1.8 pA at -190 mV; its conductance from -50 to -200 mV averaged 20 pS. Thus, native PC2 channels of renal primary cilia are able to conduct a small but detectable Ca2+ influx under the conditions tested. The possible consequences of this influx are discussed.NEW & NOTEWORTHY In autosomal dominant polycystic kidney disease, it is proposed that Ca2+ entering the primary cilium through polycystin-2 (PC2) channels may limit the formation of cysts. Recent studies predict that any macroscopic Ca2+ influx through these channels should be small. We report that the native PC2 channels in primary cilia of cultured renal epithelial cells can allow a small macroscopic calcium influx. This may allow a significant accumulation of Ca2+ in the cilium in vivo.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Cílios/fisiologia , Fenômenos Eletrofisiológicos , Canais de Cátion TRPP/metabolismo , Animais , Linhagem Celular , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Epiteliais , Túbulos Renais Coletores/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA