Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(17): e105603, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34254352

RESUMO

Variants identified in genome-wide association studies have implicated immune pathways in the development of Alzheimer's disease (AD). Here, we investigated the mechanistic basis for protection from AD associated with PLCγ2 R522, a rare coding variant of the PLCG2 gene. We studied the variant's role in macrophages and microglia of newly generated PLCG2-R522-expressing human induced pluripotent cell lines (hiPSC) and knockin mice, which exhibit normal endogenous PLCG2 expression. In all models, cells expressing the R522 mutation show a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This manifests as enhanced release of cellular calcium ion stores in response to physiologically relevant stimuli like Fc-receptor ligation or exposure to Aß oligomers. Expression of the PLCγ2-R522 variant resulted in increased stimulus-dependent PIP2 depletion and reduced basal PIP2 levels in vivo. Furthermore, it was associated with impaired phagocytosis and enhanced endocytosis. PLCγ2 acts downstream of other AD-related factors, such as TREM2 and CSF1R, and alterations in its activity directly impact cell function. The inherent druggability of enzymes such as PLCγ2 raises the prospect of PLCγ2 manipulation as a future therapeutic approach in AD.


Assuntos
Doença de Alzheimer/genética , Endocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinase C/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neuroglia/metabolismo , Proteína Quinase C/metabolismo
2.
J Allergy Clin Immunol ; 153(1): 216-229, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714437

RESUMO

BACKGROUND: Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES: The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS: The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS: The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS: PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.


Assuntos
Haploinsuficiência , Síndromes de Imunodeficiência , Fosfolipase C gama , Animais , Humanos , Camundongos , Infecções por Herpesviridae , Síndromes de Imunodeficiência/genética , Células Matadoras Naturais , Transdução de Sinais , Fosfolipase C gama/genética
3.
Mod Pathol ; : 100557, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964503

RESUMO

Small cell carcinomas (SMC) of the lung are now molecularly classified based on the expression of transcriptional regulators (NEUROD1, ASCL1, POU2F3, YAP1) and DLL3, which has emerged as an investigational therapeutic target. PLCG2 has been shown to identify a distinct subpopulation of lung SMC with stem cell-like and pro-metastasis features and poor prognosis. We analyzed the expression of these novel neuroendocrine markers and their association with traditional neuroendocrine markers and patient outcomes in a cohort of bladder neuroendocrine carcinoma (NEC) consisting of 103 SMC and 19 large cell neuroendocrine carcinomas (LCNEC) assembled in tissue microarrays. Co-expression patterns were assessed and integrated with detailed clinical annotation including overall (OS) and recurrence free survival (RFS) and response to neoadjuvant/adjuvant chemotherapy. We identified five distinct molecular subtypes in bladder SMC based on expression of ASCL1, NEUROD1 and POU2F3: ASCL1+/NEUROD1- (n=33; 34%), ASCL1-/NEUROD1+ (n=21; 21%), ASCL1+/NEUROD1+ (n=17; 17%), POU2F3+ (n=22, 22%), and ASCL1-/NEUROD1-/POU2F3- (n=5, 5%). POU2F3+ tumors were mutually exclusive with those expressing ASCL1 and NEUROD1 and exhibited lower expression of traditional neuroendocrine markers. PLCG2 expression was noted in 33 tumors (32%) and was highly correlated with POU2F3 expression (p < 0.001). DLL3 expression was high in both SMC (n=72, 82%) and LCNEC (n=11, 85%). YAP1 expression was enriched in non- neuroendocrine components and negatively correlated with all neuroendocrine markers. In patients without metastatic disease who underwent radical cystectomy, PLCG2+ or POU2F3+ tumors had shorter RFS and OS (p<0.05), but their expression was not associated with metastasis status or response to neoadjuvant/adjuvant chemotherapy. In conclusion, NEC of the bladder can be divided into distinct molecular subtypes based on the expression of ASCL1, NEUROD1 and POU2F3. POU2F3 expressing tumors represent an ASCL1/NEUROD1-negative subset of bladder NEC characterized by lower expression of traditional neuroendocrine markers. Marker expression patterns were similar in SMC and LCNEC. Expression of PLCG2 and POU2F3 was associated with shorter recurrence-free and overall survival. DLL3 was expressed at high levels in both SMC and LCNEC of the bladder, nominating it as a potential therapeutic target.

4.
Alzheimers Dement ; 20(7): 4970-4984, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687251

RESUMO

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos Transgênicos , Doença de Alzheimer/genética , Animais , Camundongos , Humanos , Fatores de Risco , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Masculino , Encéfalo/patologia , Encéfalo/metabolismo , Feminino
5.
Cell Mol Life Sci ; 79(8): 453, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895133

RESUMO

BACKGROUND: A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD. METHODS: Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2P522R variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2P522R on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aß) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay. RESULTS: Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aß, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2P522R appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells. CONCLUSION: These findings suggest that PLCγ2P522R may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2P522R 'dose' resulting in reduced beneficial impacts.


Assuntos
Doença de Alzheimer , Fosfolipase C gama , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Microglia/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Sinapses/metabolismo
6.
Neurobiol Dis ; 174: 105880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191742

RESUMO

The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Placa Amiloide/genética , Placa Amiloide/patologia , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
7.
Alzheimers Dement ; 18(10): 1765-1778, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142046

RESUMO

The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apresentação de Antígeno , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Microglia/metabolismo
8.
J Neuroinflammation ; 17(1): 182, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522286

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a life-threatening cerebrovascular disease. Neuroinflammation plays an important role in the pathogenesis of HIE, in which microglia are key cellular mediators in the regulation of neuroinflammatory processes. Colony-stimulating factor 1 (CSF1), a specific endogenous ligand of CSF1 receptor (CSF1R), is crucial in microglial growth, differentiation, and proliferation. Recent studies showed that the activation of CSF1R with CSF1 exerted anti-inflammatory effects in a variety of nervous system diseases. This study aimed to investigate the anti-inflammatory effects of recombinant human CSF1 (rh-CSF1) and the underlying mechanisms in a rat model of HIE. METHODS: A total of 202 10-day old Sprague Dawley rat pups were used. HI was induced by the right common carotid artery ligation with subsequent exposure of 2.5-h hypoxia. At 1 h and 24 h after HI induction, exogenous rh-CSF1 was administered intranasally. To explore the underlying mechanism, CSF1R inhibitor, BLZ945, and phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, were injected intraperitoneally at 1 h before HI induction, respectively. Brain infarct area, brain water content, neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS: The expressions of endogenous CSF1, CSF1R, PLCG2, protein kinase C epsilon type (PKCε), and cAMP response element-binding protein (CREB) were gradually increased after HIE. Rh-CSF1 significantly improved the neurological deficits at 48 h and 4 weeks after HI, which was accompanied by a reduction in the brain infarct area, brain edema, brain atrophy, and neuroinflammation. Moreover, activation of CSF1R by rh-CSF1 significantly increased the expressions of p-PLCG2, p-PKCε, and p-CREB, but inhibited the activation of neutrophil infiltration, and downregulated the expressions of IL-1ß and TNF-α. Inhibition of CSF1R and PLCG2 abolished these neuroprotective effects of rh-CSF1 after HI. CONCLUSIONS: Our findings demonstrated that the activation of CSF1R by rh-CSF1 attenuated neuroinflammation and improved neurological deficits after HI. The anti-inflammatory effects of rh-CSF1 partially acted through activating the CSF1R/PLCG2/PKCε/CREB signaling pathway after HI. These results suggest that rh-CSF1 may serve as a potential therapeutic approach to ameliorate injury in HIE patients.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fármacos Neuroprotetores/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/fisiologia
9.
Acta Neuropathol ; 139(6): 1025-1044, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166339

RESUMO

A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau181, total tau, and Aß1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aß1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade and genes differentially expressed in disease-associated microglia. Our data show that p.P522R in PLCG2 reduces AD disease progression by mitigating tau pathology in the presence of amyloid pathology and, as a consequence, maintains cognitive function. Targeting the enzyme PLCG2 might provide a new therapeutic approach for treating AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Fosfolipase C gama/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Biomarcadores/análise , Cognição/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
11.
Acta Neuropathol ; 138(2): 237-250, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31131421

RESUMO

The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.


Assuntos
Demência/genética , Longevidade/genética , Mutação , Fosfolipase C gama/genética , Alelos , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Demência Frontotemporal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença por Corpos de Lewy/genética , Microglia/metabolismo , Esclerose Múltipla/genética , Neuroimagem , Doença de Parkinson/genética , Risco
12.
Br J Nutr ; 119(10): 1119-1132, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29759106

RESUMO

A total of twenty-four healthy twin-bearing Liuyang black goats were allocated to two trials. In Trial 1, twelve goats received either the control diet (CG, n 6, 100 % feed) or restricted diet (RG, n 6, 60 % feed of CG) from gestation days 26 to 65 after synchronisation. In Trial 2, the remaining goats were randomly and equally divided into two treatments: CG and RG from days 95 to 125 of gestation. Placental traits, fetal weight, serum parameters, nitric oxide (NO), angiogenesis gene expression and cotyledon proteome were measured at the end of each trial. In early pregnancy, the total and relative weights of placenta, uterine caruncle and cotyledon, as well as fetus, were increased (P<0·05) in RG. The NO content in maternal serum was also increased (P<0·05) in RG. In all, fifty differentially expressed proteins were identified in cotyledon. The up-regulated proteins are related to proliferation and fission of trophoblast cell and the placenta angiogenesis. During the late pregnancy trial, placental weight was increased (P<0·05) in RG, but weight of the fetus was decreased (P<0·05). The capillary density in the cotyledon was also decreased (P<0·01). A total of fifty-eight proteins were differentially expressed in cotyledon. The up-regulated proteins in RG are related to placenta formation, blood flow regulation and embryonic development. These results indicated that feed intake restriction during gestation influenced the placental and fetal development in a stage-dependent manner. These findings have important implications for developing novel nutrient management strategies in goat production.


Assuntos
Privação de Alimentos/fisiologia , Idade Gestacional , Cabras/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Placenta/fisiologia , Proteoma/análise , Animais , Feminino , Desenvolvimento Fetal/genética , Peso Fetal , Fenômenos Fisiológicos da Nutrição Materna/genética , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Tamanho do Órgão , Placenta/anatomia & histologia , Placenta/irrigação sanguínea , Placentação/genética , Gravidez , Trofoblastos/fisiologia , Regulação para Cima , Útero/anatomia & histologia
13.
Fish Shellfish Immunol ; 63: 353-366, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27894895

RESUMO

Phospholipase C gamma 1 and gamma 2 (PLCG1 and PLCG2) are influential in modulating Ca2+ and diacylglycerol, second messengers involved in tyrosine kinase-dependent signaling, including growth factor activation. Here, we used RACE (rapid amplification of cDNA ends) to clone cDNA encoding PLCG1 (PoPLCG1) and PLCG2 (PoPLCG2) in the olive flounder (Paralichthys olivaceus). The respective 1313 and 1249 amino acid sequences share high identity with human PLCG1 and PLCG2, and contain the following domains: pleckstrin homology (PH), EF-hand, catalytic X and Y, Src homology 2 (SH2), Src homology 3 (SH3), and C2. Phylogenic analysis and sequence comparison of PoPLCG1 and PoPLCG2 with other PLC isozymes showed a close relationship between the two PLCGs, supported by structural analysis. In addition, tissue expression analysis showed that PoPLCG1 was expressed predominantly in the brain, eye, and heart, whereas PoPLCG2 was expressed principally in gills, esophagus, spleen, and kidney. Following stimulation with LPS and Poly I:C, PoPLCG expression was compared with the expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α via reverse transcription-PCR and real-time quantitative PCR. Our results suggest that PoPLCG isozymes perform a critical immune function in olive flounder, being active in pathogen resistance and the inflammation process.


Assuntos
Proteínas de Peixes/genética , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Fosfolipase C gama/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Lipopolissacarídeos/farmacologia , Especificidade de Órgãos , Fosfolipase C gama/química , Fosfolipase C gama/metabolismo , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária
14.
Front Immunol ; 14: 1014150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776842

RESUMO

Background: The APLAID syndrome is a rare primary immunodeficiency caused by gain-of-function mutations in the PLCG2 gene. We present a 7-year-old APLAID patient who has recurrent blistering skin lesions, skin infections in the perineum, a rectal perineal fistula, and inflammatory bowel disease. Methods: To determine the genetic cause of our patient, WES and bioinformatics analysis were performed. Flow cytometry was used for phenotyping immune cell populations in peripheral blood. Cytokines released into plasma were analyzed using protein chip technology. The PBMCs of patient and a healthy child were subjected to single-cell RNA-sequencing analysis. Results: The patient carried a novel de novo missense mutation c.2534T>C in exon 24 of the PLCG2 gene that causes a leucine to serine amino acid substitution (p.Leu845Ser). Bioinformatics analysis revealed that this mutation had a negative impact on the structure of the PLCγ2 protein, which is highly conserved in many other species. Immunophenotyping by flow cytometry revealed that in addition to the typical decrease in circulating memory B cells, the levels of myeloid dendritic cells (mDCs) in the children's peripheral blood were significantly lower, as were the CD4+ effector T cells induced by their activation. Single-cell sequencing revealed that the proportion of different types of cells in the peripheral blood of the APLAID patient changed. Conclusions: We present the first case of APLAID with severely reduced myeloid dendritic cells carrying a novel PLCG2 mutation, and conducted a comprehensive analysis of immunological features in the ALPAID patient, which has not been mentioned in previous reports. This study expands the spectrum of APLAID-associated immunophenotype and genotype. The detailed immune analyses in this patient may provide a basis for the development of targeted therapies for this severe autoinflammatory disease.


Assuntos
Doenças Autoimunes , Doenças Inflamatórias Intestinais , Criança , Humanos , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Mutação , Síndrome
15.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106102

RESUMO

Phospholipase C gamma-2 (PLCγ2) catalyzes the hydrolysis of the membrane phosphatidylinositol-4,5-bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol trisphosphate (IP3), which subsequently feed into numerous downstream signaling pathways. PLCG2 polymorphisms are associated with both reduced and increased risk of Alzheimer's disease (AD) and with longevity. In the brain, PLCG2 is highly expressed in microglia, where it is proposed to regulate phagocytosis, secretion of cytokines/chemokines, cell survival and proliferation. We analyzed the brains of three-month-old PLCγ2 knockout (KO), heterozygous (HET), and wild-type (WT) mice using multiomics approaches, including shotgun lipidomics, proteomics, and gene expression profiling, and immunofluorescence. Lipidomic analyses revealed sex-specific losses of total cerebrum PIP2 and decreasing trends of DAG content in KOs. In addition, PLCγ2 depletion led to significant losses of myelin-specific lipids and decreasing trends of myelin-enriched lipids. Consistent with our lipidomics results, RNA profiling revealed sex-specific changes in the expression levels of several myelin-related genes. Further, consistent with the available literature, gene expression profiling revealed subtle changes on microglia phenotype in mature adult KOs under baseline conditions, suggestive of reduced microglia reactivity. Immunohistochemistry confirmed subtle differences in density of microglia and oligodendrocytes in KOs. Exploratory proteomic pathway analyses revealed changes in KO and HET females compared to WTs, with over-abundant proteins pointing to mTOR signaling, and under-abundant proteins to oligodendrocytes. Overall, our data indicate that loss of PLCγ2 has subtle effects on brain homeostasis that may underlie enhanced vulnerability to AD pathology and aging via novel mechanisms in addition to regulation of microglia function.

16.
J Allergy Clin Immunol Pract ; 11(8): 2275-2285, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290539

RESUMO

Cold urticaria is a chronic condition causing episodic symptoms of cold-induced wheals or angioedema in response to direct or indirect exposure to cold temperatures. Whereas symptoms of cold urticaria are typically benign and self-limiting, severe systemic anaphylactic reactions are possible. Acquired, atypical, and hereditary forms have been described, each with variable triggers, symptoms, and responses to therapy. Clinical testing, including response to cold stimulation, helps define disease subtypes. More recently, monogenic disorders characterized by atypical forms of cold urticaria have been described. Here, we review the different forms of cold-induced urticaria and related syndromes and propose a diagnostic algorithm to aid clinicians in making a timely diagnosis for the appropriate management of these patients.


Assuntos
Angioedema , Urticária , Humanos , Síndrome , Urticária/diagnóstico , Urticária/terapia , Urticária/etiologia , Angioedema/diagnóstico , Temperatura Baixa , Diagnóstico Diferencial
17.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187758

RESUMO

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

18.
SLAS Discov ; 28(4): 170-179, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933698

RESUMO

A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Corantes Fluorescentes , Fosfolipase C gama/genética , Ensaios de Triagem em Larga Escala , Cumarínicos
19.
Mol Neurodegener ; 18(1): 25, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081539

RESUMO

BACKGROUND: The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS: We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS: In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION: The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Sistema Imunitário , Fosfolipase C gama/genética , SARS-CoV-2
20.
Eur J Med Genet ; 65(1): 104387, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768012

RESUMO

Pathogenic variants of PLCG2 encoding phospholipase C gamma 2 (PLCγ2) were first reported in 2012 and their clinical manifestations vary widely. PLCG2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) are representative examples of PLCG2 pathogenic variants. In this report, we describe a 17-year-old male with recurrent blistering skin lesions, B-cell lymphopenia, and asthma. Distinct from the patients in previous reports, this patient had the heterozygous de novo c.2119T > C missense variant (NM_002661.4) resulting in a serine to proline amino acid substitution (p.Ser707Pro). The variant located to the PLCγ2 C-terminal Src homology 2 (cSH2) domain, which is a critical site for the restriction of intrinsic enzyme activity. This variant could be classified as "likely pathogenic" according to American College of Medical Genetics and Genomics guidelines. Laboratory results showed a reduction in circulating B cells without a decrease of serum IgG and IgA. Our findings expand the variety of clinical phenotypes for PLCG2 missense variants.


Assuntos
Linfócitos B , Vesícula/genética , Linfopenia/genética , Fosfolipase C gama/genética , Adolescente , Vesícula/imunologia , Humanos , Linfopenia/imunologia , Masculino , Mutação de Sentido Incorreto , Recidiva , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA