RESUMO
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Assuntos
Epitélio/fisiologia , Helmintíase/imunologia , Helmintos/fisiologia , Fatores de Transcrição de Octâmero/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Th2/imunologia , Animais , Humanos , Sistema Imunitário , Interleucina-17/metabolismo , Sistema Nervoso , Neuroimunomodulação , Fatores de Transcrição de Octâmero/genética , Transdução de Sinais , Canais de Cátion TRPM/metabolismoRESUMO
Tumor heterogeneity of a primary histologic cancer type has major implications for cancer research and therapeutics. An important and understudied aspect of this heterogeneity is the role of transcription factors that serve as "lineage oncogenes" in a tumor type. A demonstration that different subgroups have distinct dependencies on lineage-specific transcription factors is highlighted in a relatively homogenous cancer type: the pulmonary neuroendocrine cancer small cell lung carcinoma (SCLC). Identification of these factors is providing new insights into the origin of the heterogeneity and subtype-specific vulnerabilities in SCLC and provides a template for studying heterogeneity in other cancer types.
Assuntos
Carcinoma Neuroendócrino/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula , Heterogeneidade Genética , Humanos , MutaçãoRESUMO
Small cell lung cancer (SCLC) is widely considered to be a tumor of pulmonary neuroendocrine cells; however, a variant form of this disease has been described that lacks neuroendocrine features. Here, we applied domain-focused CRISPR screening to human cancer cell lines to identify the transcription factor (TF) POU2F3 (POU class 2 homeobox 3; also known as SKN-1a/OCT-11) as a powerful dependency in a subset of SCLC lines. An analysis of human SCLC specimens revealed that POU2F3 is expressed exclusively in variant SCLC tumors that lack expression of neuroendocrine markers and instead express markers of a chemosensory lineage known as tuft cells. Using chromatin- and RNA-profiling experiments, we provide evidence that POU2F3 is a master regulator of tuft cell identity in a variant form of SCLC. Moreover, we show that most SCLC tumors can be classified into one of three lineages based on the expression of POU2F3, ASCL1, or NEUROD1. Our CRISPR screens exposed other unique dependencies in POU2F3-expressing SCLC lines, including the lineage TFs SOX9 and ASCL2 and the receptor tyrosine kinase IGF1R (insulin-like growth factor 1 receptor). These data reveal POU2F3 as a cell identity determinant and a dependency in a tuft cell-like variant of SCLC, which may reflect a previously unrecognized cell of origin or a trans-differentiation event in this disease.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Receptor IGF Tipo 1/metabolismoRESUMO
Small cell carcinomas (SMC) of the lung are now molecularly classified based on the expression of transcriptional regulators (NEUROD1, ASCL1, POU2F3, and YAP1) and DLL3, which has emerged as an investigational therapeutic target. PLCG2 has been shown to identify a distinct subpopulation of lung SMC with stem cell-like and prometastasis features and poor prognosis. We analyzed the expression of these novel neuroendocrine markers and their association with traditional neuroendocrine markers and patient outcomes in a cohort of bladder neuroendocrine carcinoma (NEC) consisting of 103 SMC and 19 large cell NEC (LCNEC) assembled in tissue microarrays. Coexpression patterns were assessed and integrated with detailed clinical annotation including overall (OS) and recurrence-free survival (RFS) and response to neoadjuvant/adjuvant chemotherapy. We identified 5 distinct molecular subtypes in bladder SMC based on the expression of ASCL1, NEUROD1, and POU2F3: ASCL1+/NEUROD1- (n = 33; 34%), ASCL1- /NEUROD1+ (n = 21; 21%), ASCL1+/NEUROD1+ (n = 17; 17%), POU2F3+ (n = 22, 22%), and ASCL1- /NEUROD1- /POU2F3- (n = 5, 5%). POU2F3+ tumors were mutually exclusive with those expressing ASCL1 and NEUROD1 and exhibited lower expression of traditional neuroendocrine markers. PLCG2 expression was noted in 33 tumors (32%) and was highly correlated with POU2F3 expression (P < .001). DLL3 expression was high in both SMC (n = 72, 82%) and LCNEC (n = 11, 85%). YAP1 expression was enriched in nonneuroendocrine components and negatively correlated with all neuroendocrine markers. In patients without metastatic disease who underwent radical cystectomy, PLCG2+ or POU2F3+ tumors had shorter RFS and OS (P < .05), but their expression was not associated with metastasis status or response to neoadjuvant/adjuvant chemotherapy. In conclusion, the NEC of the bladder can be divided into distinct molecular subtypes based on the expression of ASCL1, NEUROD1, and POU2F3. POU2F3-expressing tumors represent an ASCL1/NEUROD1-negative subset of bladder NEC characterized by lower expression of traditional neuroendocrine markers. Marker expression patterns were similar in SMC and LCNEC. Expression of PLCG2 and POU2F3 was associated with shorter RFS and OS. DLL3 was expressed at high levels in both SMC and LCNEC of the bladder, nominating it as a potential therapeutic target.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores Tumorais , Carcinoma Neuroendócrino , Neoplasias da Bexiga Urinária , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/mortalidade , Carcinoma Neuroendócrino/terapia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Pequenas/patologia , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/mortalidade , Carcinoma de Células Pequenas/genética , Análise Serial de Tecidos , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fatores do Domínio POU/análise , Adulto , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Intervalo Livre de DoençaRESUMO
Treatment for small cell lung cancer (SCLC) has not changed significantly compared to the overwhelming development of targeted therapies for non-small cell lung cancer. However, recent epigenetic and expressional analyses have revealed that SCLC can be divided into four distinct subtypes, which may lead to precision treatments. The situation appears slightly similar to the "four-color problem," a classic mathematical problem stating that no more than four colors are required to color the regions so that no two adjacent areas have the same color. This review introduces the framework for subtyping SCLC into four molecular subtypes and the promising targeted treatment for each subtype.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/terapia , Imunoterapia , BiologiaRESUMO
Rectal cancer (RC) accounts for one-third of colorectal cancers (CRC), and 40% of these are locally advanced rectal cancers (LARC). The use of neoadjuvant chemoradiotherapy (nCRT) significantly reduces the rate of local recurrence compared to adjuvant therapy or surgery alone. However, after nCRT, up to 40%-60% of patients show a poor pathological response, while only about 20% achieve a pathological complete response. In this scenario, the identification of novel predictors of tumor response to nCRT is urgently needed to reduce LARC mortality and to spare poorly responding patients from unnecessary treatments. Therefore, by combining gene and microRNA expression datasets with proteomic data from LARC patients, we developed an integrated network centered on seven hub-genes putatively involved in the response to nCRT. In an independent validation cohort of LARC patients, we confirmed that differential expression of NFKB1, TRAF6 and STAT3 is correlated with the response to nCRT. In addition, the functional enrichment analysis also revealed that these genes are strongly related to hallmarks of cancer and inflammation, whose dysfunction may causatively affect LARC patient's response to nCRT. Furthermore, by constructing the transcription factor-module network, we hypothesized a protective role of POU2F3 gene, which could be used as a new drug target in LARC patients. Finally, we identified and tested in vitro entinostat, a histone deacetylase inhibitor, as a chemical compound that could be combined with a classical therapeutic regimen in order to design more efficient therapeutic strategies in LARC management.
Assuntos
Antineoplásicos , Neoplasias Retais , Humanos , Fluoruracila , Resultado do Tratamento , Multiômica , Proteômica , Quimiorradioterapia , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Terapia Neoadjuvante , Fatores de Transcrição de OctâmeroRESUMO
Subtypes of small cell lung carcinoma (SCLC) are defined by the expression of ASCL1, NEUROD1, and POU2F3 markers. The aim of our study was to explore the extent to which the intratumoral heterogeneity of ASCL1, NEUROD1, and POU2F3 may lead to discrepancies in expression of these markers in surgical samples and their matched tissue microarray (TMA) and lymph node (LN) metastatic sites. METHODS AND RESULTS: The cohort included 77 patients with SCLC. Immunohistochemical examinations were performed on whole slides of the primary tumour, paired TMAs, and metastatic LN sites. Samples with H-scores >50 were considered positive. Based on the ASCL1, NEUROD1, and POU2F3 staining pattern, we grouped the tumours as follows: ASCL1-dominant (SCLC-A), NEUROD1-dominant (SCLC-N), ASCL1/NEUROD1 double-negative with POU2F3 expression (SCLC-P), and negative for all three markers (SCLC-I). In whole slides, 40 SCLC-A (52%), 20 SCLC-N (26%), 15 SCLC-P (20%), and two SCLC-I (3%) tumours were identified. Comparisons of TMAs or LN metastatic sites and corresponding surgical specimens showed that positivity for ASCL1, NEUROD1, and POU2F3 in TMAs (all P < 0.0001) or LN metastatic sites (ASCL1, P = 0.0047; NEUROD1, P = 0.0069; POU2F3, P < 0.0001) correlated significantly with that of corresponding surgical specimens. CONCLUSION: The positivity for these markers in TMAs and LN metastatic sites was significantly correlated with that of corresponding surgical specimens, indicating that biopsy specimens could be used to identify molecular subtypes of SCLC in patients.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Metástase Linfática , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição de Octâmero/metabolismoRESUMO
AIMS: Small cell lung carcinoma (SCLC) can be classified into transcription factor-based subtypes (ASCL1, NeuroD1, POU2F3). While in-vitro studies suggest intratumoral heterogeneity in the expression of these markers, how SCLC subtypes vary over time and among locations in patients remains unclear. METHODS AND RESULTS: We searched a consecutive series of patients at our institution in 2006-22 for those with greater than one available formalin-fixed paraffin-embedded SCLC sample in multiple sites and/or time-points. Immunohistochemistry for ASCL1, NeuroD1 and POU2F3 was performed and evaluated using H-scores, with subtype assigned based on the positive marker (H-score threshold >10) with the highest H-score. The 179 samples (75, lung; 51, lymph nodes; 53, non-nodal metastases) from 84 patients (74 with two, 10 with more than two samples) included 98 (54.7%) ASCL1-dominant, 47 (26.3%) NeuroD1-dominant, 15 (8.4%) POU2F3-dominant, 17 (9.5%) triple-negative and two (1.1%) ASCL1/NeuroD1 co-dominant samples. NeuroD1-dominant subtype was enriched in non-lung locations. Subtype concordance from pairwise comparison was 71.4% overall and 89.7% after accounting for ASCL1/NeuroD1-dual expressors and technical factors including <500 cells/slide, H-score thresholds and sample decalcification. No significant difference in subtype concordance was noted with a longer time lapse or with extrathoracic versus intrathoracic samples in this cohort. CONCLUSIONS: After accounting for technical factors, transcription factor-based subtyping was discordant among multiple SCLC samples in ~10% of patients, regardless of sample locations and time lapse. Our findings highlighted the spatiotemporal heterogeneity of SCLC in clinical samples and potential challenges, including technical and biological factors, that might limit concordance in SCLC transcription factor-based subtyping.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição de Octâmero/metabolismoRESUMO
BACKGROUND: Breast cancer is highly heterogeneous, suggesting that small but relevant subsets have been under-recognized. Rare and mainly triple-negative breast cancers (TNBCs) were recently found to exhibit tuft cell-like expression profiles, including POU2F3, the tuft cell master regulator. In addition, immunohistochemistry (IHC) has identified POU2F3-positive cells in the normal human breast, suggesting the presence of tuft cells in this organ. METHODS: Here, we (i) reviewed previously identified POU2F3-positive invasive breast cancers (n = 4) for POU2F3 expression in intraductal cancer components, (ii) investigated a new cohort of invasive breast cancers (n = 1853) by POU2F3-IHC, (iii) explored POU2F3-expressing cells in non-neoplastic breast tissues obtained from women with or without BRCA1 mutations (n = 15), and (iv) reanalyzed publicly available single-cell RNA sequencing (scRNA-seq) data from normal breast cells. RESULTS: Two TNBCs of the four previously reported invasive POU2F3-positive breast cancers contained POU2F3-positive ductal carcinoma in situ (DCIS). In the new cohort of invasive breast cancers, IHC revealed four POU2F3-positive cases, two of which were triple-negative, one luminal-type, and one triple-positive. In addition, another new POU2F3-positive tumor with a triple-negative phenotype was found in daily practice. All non-neoplastic breast tissues contained POU2F3-positive cells, irrespective of BRCA1 status. The scRNA-seq reanalysis confirmed POU2F3-expressing epithelial cells (3.3% of all epithelial cells) and the 17% that co-expressed the other two tuft cell-related markers (SOX9/AVIL or SOX9/GFI1B), which suggested they were bona fide tuft cells. Of note, SOX9 is also known as the "master regulator" of TNBCs. CONCLUSIONS: POU2F3 expression defines small subsets in various breast cancer subtypes, which can be accompanied by DCIS. The mechanistic relationship between POU2F3 and SOX9 in the breast warrants further analysis to enhance our understanding of normal breast physiology and to clarify the significance of the tuft cell-like phenotype for TNBCs.
Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Intraductal não Infiltrante/patologia , Células Epiteliais/metabolismo , Fatores de Transcrição SOX9/genéticaRESUMO
The tissue distribution and prognostic relevance of subtype-specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small-cell lung cancer (SCLC). The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant), and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Prognóstico , Proteômica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/cirurgia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Humanos , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Timo/patologiaRESUMO
Small cell lung carcinoma (SCLC) is a high grade neuroendocrinne tumour accounting for approximately 15 % of lung cancers. It is characterised by early relapse and low survival rate. The treatment has remained unchanged for decades. Histological and cytological characteristics are summarised in brief, along with genetic alterations of the tumour. A new molecular subtype classification is presented according to the expression of transciptional factors ASCL1 (SCLC-A), NEUROD1 (SCLC-D), POU2F3 (SCLC-P) and YAP1 (SCLC-Y). These subtypes represent different ways of tumorigenesis, and the distinct genomic alterations may offer new therapeutic strategies.
Assuntos
Carcinogênese , Carcinoma de Pequenas Células do Pulmão , Carcinoma de Pequenas Células do Pulmão/classificação , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Humanos , Fatores de Transcrição/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão GênicaRESUMO
G protein-coupled taste receptors and their downstream signaling elements, including Gnat3 (also known as α-gustducin) and TrpM5, were first identified in taste bud cells. Subsequent studies, however, revealed that some cells in nongustatory tissues also express taste receptors and/or their signaling elements. These nongustatory-tissue-expressed taste receptors and signaling elements play important roles in a number of physiological processes, including metabolism and immune responses. Special populations of cells expressing taste signaling elements in nongustatory tissues have been described as solitary chemosensory cells (SCCs) and tuft cells, mainly based on their morphological features and their expression of taste signaling elements as a critical molecular signature. These cells are typically scattered in barrier epithelial tissues, and their functions were largely unknown until recently. Emerging evidence shows that SCCs and tuft cells play important roles in immune responses to microbes and parasites. Additionally, certain immune cells also express taste receptors or taste signaling elements, suggesting a direct link between chemosensation and immune function. In this chapter, we highlight our current understanding of the functional roles of these "taste-like" cells and taste signaling pathways in different tissues, focusing on their activities in immune regulation.
Assuntos
Papilas Gustativas , Paladar , Células Quimiorreceptoras/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Paladar/fisiologia , Papilas Gustativas/metabolismoRESUMO
BACKGROUND: Recent studies have shown that according to the expression levels of achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), and POU class 2 homeobox 3 (POU2F3), small cell lung cancer (SCLC) can be divided into four subtypes: SCLC-A (ASCL1-dominant), SCLC-N (NEUROD1-dominant), SCLC-P (POU2F3-dominant), and SCLC-I (triple negative or SCLC-inflamed). However, there are limited data on the clinical characteristics and prognosis of molecular subtypes of SCLC. METHODS: Immunohistochemistry (IHC) was used to detect the expression levels of ASCL1, NEUROD1, and POU2F3 in 53 patient samples of resectable SCLC. The subtype was defined by the differential expression of the transcription factors for ASCL1, NEUROD1, and POU2F3 or the low expression of all three factors with an inflamed gene signature (SCLC-A, SCLC-N, SCLC-P, and SCLC-I, respectively). The clinicopathological characteristics, immunological features (programmed death ligand 1 [PD-L1] expression and CD8+ tumor infiltrating lymphocyte [TIL] density), and patient outcomes of the four subtypes of SCLC were analyzed. RESULTS: Positive ASCL1, NEUROD1, and POU2F3 staining was detected in 43 (79.2%), 27 (51.0%), and 17 (32.1%) SCLC specimens by IHC. According to the results of IHC analysis, SCLC was divided into four subtypes: SCLC-A (39.6%), SCLC-N (28.3%), SCLC-P (17.0%), and SCLC-I (15.1%). The 5-year overall survival (OS) rates of these four subtypes were 61.9%, 69.3%, 41.7%, and 85.7%, respectively (P=0.251). There were significant differences in smoking status among different subtypes of SCLC (P= 0.031). However, we did not confirm the correlation between subtypes of SCLC and other clinicopathological factors or immune profiles. Cox multivariate analysis showed that N stage (P=0.025), CD8+ TILs (P=0.024), Ki-67 level (P=0.040), and SCLC-P (P=0.023) were independent prognostic factors for resectable SCLC. CONCLUSIONS: Our IHC-based study validated the proposed classification of SCLC using the expression patterns of key transcriptional regulatory factors. We found that SCLC-P was associated with smokers and was one of the poor prognostic factors of limited-stage SCLC. In addition, no correlation was found between PD-L1 expression or CD8+ TIL density and SCLC subtypes.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Prognóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/cirurgia , Fatores de Transcrição/genéticaRESUMO
Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.
Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Cabras/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologiaRESUMO
POU domain class 2 transcription factor 3 (POU2F3) plays an important role in keratinocyte proliferation and differentiation. Our previous study identified four sheep POU2F3 transcript variants (POU2F3-1, POU2F3-2, POU2F3-3, and POU2F3-4), encoding three POU2F3 protein isoforms (POU2F3-1, POU2F3-2, and POU2F3-3). However, the functional differences among the three POU2F3 isoforms remain unknown. The objective of this study was to determine the tissue expression pattern of the four POU2F3 transcript variants in sheep and to investigate the functional differences in cell proliferation among the three POU2F3 isoforms. Quantitative RT-PCR analysis showed that the four POU2F3 transcripts were ubiquitously expressed in all tested adult sheep tissues, and POU2F3-1 exhibited higher expression level than the other three POU2F3 transcript variants in skin (P < 0.05). Cell proliferation assay showed that overexpression of any one of the three POU2F3 isoforms significantly inhibited the proliferation of sheep fetal fibroblasts and HaCaT cells at 48 and 72 h after transfection (P < 0.05). POU2F3-3 had less inhibitory effect on cell proliferation than POU2F3-1 and POU2F3-2 (P < 0.05), and POU2F3-1 and POU2F3-2 had similar inhibitory effects (P > 0.05). Dual luciferase reporter assays demonstrated that overexpression of any one of the three POU2F3 isoforms significantly inhibited the promoter activities of keratin 14 (KRT14) and matrix metalloproteinase 19 (MMP19) genes (P < 0.05). POU2F3-3 had less inhibitory effect on the promoter activities of KRT14 and MMP19 genes than POU2F3-1 and POU2F3-2 (P < 0.05), and POU2F3-1 and POU2F3-2 had similar inhibitory effects (P > 0.05). These results suggest three sheep POU2F3 isoforms have similar functional effects, but to a different extent.
Assuntos
Queratinócitos/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Ovinos/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Queratina-14/genética , Queratinócitos/citologia , Masculino , Metaloproteinases da Matriz Secretadas/genética , Fatores de Transcrição de Octâmero/genética , Isoformas de Proteínas/genéticaRESUMO
Functional maintenance of the mammalian main olfactory epithelium (MOE) is challenging because of its direct exposure to a wide spectrum of environmental chemicals. We previously reported that transient receptor potential channel M5-expressing microvillous cells (TRPM5-MCs) in the MOE play an important role in olfactory maintenance. To investigate the underpinning mechanisms, we exposed transcription factor Skn-1a knockout (Skn-1a-/-) mice lacking TRPM5-MCs, and TRPM5-GFP mice to either vehicle (water) or a mixture of odorous chemicals and chitin for two weeks and analyzed the expression of olfactory signaling proteins using immunolabeling and neurotrophin (NT) and NT receptor (NTR) gene transcripts using real-time quantitative PCR. The chemical exposure did not significantly attenuate the immunolabeling of olfactory signaling proteins. Vehicle-exposed Skn-1a-/- and TRPM5-GFP mice expressed similar levels of NT and NTR gene transcripts in the MOE and olfactory bulb. Chemical exposure significantly increased MOE expression of p75NTR in Skn-1a-/- mice, while p75NTR expression was reduced in TRPM5-GFP mice, as compared to vehicle-exposed mice. Additionally, our RNA in situ hybridization analysis and immunolabeling confirmed MOE expression of most NTs and NTRs. Together, these results indicate that TRPM5-MCs and chemical exposure influence expression of some NTs and NTRs in the MOE and olfactory bulb (OB).
Assuntos
Fatores de Crescimento Neural/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores de Fator de Crescimento Neural/genética , Animais , Quitina/farmacologia , Etilaminas/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fatores de Transcrição de Octâmero/genética , Neurônios Receptores Olfatórios/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismoRESUMO
POU class 2 homeobox 3 (POU2F3)-positive small cell bladder carcinoma (SCBC) is an extremely rare entity, and its clinicopathologic features have not been fully described. Here, we investigated the clinicopathologic features of 4 cases of POU2F3-positive small cell bladder carcinoma (SCBC) and reviewed the literature. We collected 12 cases of SCBC from our departmental archives and detected the expression of POU2F3 by immunohistochemical (IHC) staining. Selected cases with or without POU2F3 expression were subjected to gene expression analysis between two different groups using DESeq2 software. We identified 4 POU2F3-positive SCBC patients, 2 males and 2 females, with a mean age of 77 years. Three patients had hematuria, and 1 patient had dysuria. Radiologic findings showed a bladder mass. Pathologic diagnosis showed that 3 cases were pure SCBC and 1 was mixed urothelial cancer (UC). Histopathologically, four POU2F3-positive SCBC tumors were composed of small round cells with sparse cytoplasm, the nuclei were salt-and-pepper-like or finely granular. Tumor cells showed characteristic cytoplasmic staining with punctate positive signals for cytokeratin. Syn and CD56 were diffusely positive in all the 4 patients. CgA was positive in only one patient. POU2F3-positive SCBC showed higher expression levels of POU2F3, HMGA2 and PLCG2 genes by RNA-Seq. Our data showed the specific clinicopathologic features of 4 rare POU2F3-positive SCBC cases, and the distinct molecular feature was observed between POU2F3-positive and negative SCBC in the limited number of cases.
Assuntos
Biomarcadores Tumorais , Carcinoma de Células Pequenas , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Masculino , Feminino , Idoso , Carcinoma de Células Pequenas/patologia , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/análiseRESUMO
BACKGROUND: Recent studies have reported the predictive and prognostic value of novel transcriptional factor-based molecular subtypes in small-cell lung cancer (SCLC). We conducted an in-depth analysis pairing multi-omics data with immunohistochemistry (IHC) to elucidate the underlying characteristics associated with differences in clinical outcomes between subtypes. METHODS: IHC (n = 252), target exome sequencing (n = 422), and whole transcriptome sequencing (WTS, n = 189) data generated from 427 patients (86.4% males, 13.6% females) with SCLC were comprehensively analysed. The differences in the mutation profile, gene expression profile, and inflammed signatures were analysed according to the IHC-based molecular subtype. FINDINGS: IHC-based molecular subtyping, comprised of 90 limited-disease (35.7%) and 162 extensive-disease (64.3%), revealed a high incidence of ASCL1 subtype (IHC-A, 56.3%) followed by ASCL1/NEUROD1 co-expressed (IHC-AN, 17.9%), NEUROD1 (IHC-N, 12.3%), POU2F3 (IHC-P, 9.1%), triple-negative (IHC-TN, 4.4%) subtypes. IHC-based subtype showing high concordance with WTS-based subtyping and non-negative matrix factorization (NMF) clusterization method. IHC-AN subtype resembled IHC-A (rather than IHC-N) in terms of both gene expression profiles and clinical outcomes. Favourable median overall survival was observed in IHC-A (15.2 months) compared to IHC-N (8.0 months, adjusted HR 2.3, 95% CI 1.4-3.9, p = 0.002) and IHC-P (8.3 months, adjusted HR 1.7, 95% CI 0.9-3.2, p = 0.076). Inflamed tumours made up 25% of cases (including 53% of IHC-P, 26% of IHC-A, 17% of IHC-AN, but only 11% of IHC-N). Consistent with recent findings, inflamed tumours were more likely to benefit from first-line immunotherapy treatment than non-inflamed phenotype (p = 0.002). INTERPRETATION: This study provides fundamental data, including the incidence and basic demographics of molecular subtypes of SCLC using both IHC and WTS from a comparably large, real-world Asian/non-Western patient cohort, showing high concordance with the previous NMF-based SCLC model. In addition, we revealed underlying biological pathway activities, immunogenicity, and treatment outcomes based on molecular subtype, possibly related to the difference in clinical outcomes, including immunotherapy response. FUNDING: This work was supported by AstraZeneca, Future Medicine 2030 Project of the Samsung Medical Center [grant number SMX1240011], the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [grant number 2020R1C1C1010626] and the 7th AstraZeneca-KHIDI (Korea Health Industry Development Institute) oncology research program.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Feminino , Humanos , Fatores de Transcrição/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/terapia , PrognósticoRESUMO
PURPOSE: Salivary gland tumors are histologically diverse. Ionocytes and tuft cells, rare epithelial cells found in normal salivary glands, might be associated with salivary tumors. Here, we explored the expression of FOXI1 and POU2F3, master regulators of ionocytes and tuft cells, respectively, for common salivary neoplasms using immunohistochemistry. METHODS: We analyzed normal salivary tissues and nine salivary gland tumors; Warthin tumors (WT), pleomorphic adenomas (PA), basal cell adenomas, and oncocytomas were benign, whereas mucoepidermoid, adenoid cystic, acinic cell, salivary duct carcinomas, and polymorphous adenocarcinomas were malignant. RESULTS: Normal salivary glands contained a few FOXI1- and POU2F3-positive cells in the ducts instead of the acini, consistent with ionocytes and tuft cells, respectively. Among the benign tumors, only WTs and PAs consistently expressed FOXI1 (10/10 and 9/10, respectively). The median H-score of WTs was significantly higher than that of PAs (17.5 vs. 4, P = 0.01). While WTs and PAs harbored POU2F3-positive cells (10/10 and 9/10, respectively), the median H-score was higher in WTs than in PAs (10.5 vs 4, respectively). Furthermore, WTs exhibited a unique staining pattern of FOXI1- and POU2F3-positive cells, which were present in luminal and abluminal locations, respectively. Whereas none of the malignant tumors expressed FOXI1, only adenoid cystic carcinoma consistently expressed POU2F3 (5/5), with a median H-score of 4. CONCLUSION: The expression patterns of the characteristic transcription factors found in ionocytes and tuft cells vary among salivary gland tumor types and are higher in WT, which might be relevant for understanding and diagnosing salivary gland neoplasms.