Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Invest ; 38(1): 1-12, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31797701

RESUMO

Purpose: The function of long noncoding RNAs (lncRNA) in breast cancer metastasis remains largely unknown. In this work, the role of HOXC-AS3 in breast cancer progression was investigated.Methods: By using Cancer Genome Atlas (TCGA) Database, we investigated the expression of HOXC-AS3 in breast cancer and explored the association between HOXC-AS3 expression and prognosis. Then, we studied the biological function of HOXC-AS3 in cell migration and invasion both in vitro and in vivo. Furthermore, the target miRNA of HOXC-AS3, and the target mRNA of miR-3922-5p were proved.Results: HOXC-AS3 is aberrantly overexpressed in breast cancers especially the HER2+ type. Moreover, high expression of HOXC-AS3 has a relationship with poor clinical outcomes of breast cancer. In addition, HOXC-AS3 regulates cell Invasion and migration both in vitro and in vivo. Our results demonstrated that miR-3922-5p was a direct target of HOXC-AS3, and PPP1R1A was a target of miR-3922-5p in breast cancer.Conclusions: The novel lncRNA HOXC-AS3 acts as a miR-3922-5p sponge to upregulate PPP1R1A protein expression, and thus results in promoting breast cancer metastasis. HOXC-AS3 could be a novel therapeutic target for breast cancer therapeutics.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína Fosfatase 1/genética , RNA Longo não Codificante/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Feminino , Humanos , Camundongos , MicroRNAs/metabolismo , Prognóstico , Análise de Sobrevida , Fatores de Tempo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Life Sci ; 345: 122608, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574885

RESUMO

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteína Fosfatase 1 , Animais , Humanos , Ratos , Canais de Cálcio/metabolismo , Linhagem Celular , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
3.
Metabolism ; 118: 154734, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631146

RESUMO

The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in ß-cells and that its expression is reduced in dysfunctional ß-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and ß-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in INS1 (832/13) ß-cells impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical ß-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the ß-cell transcription factor MafA is required for PPP1R1A expression and that reduced ß-cell PPP1R1A levels impaired ß-cell function and contributed to ß-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic ß-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteína Fosfatase 1/genética , Animais , Desdiferenciação Celular , Linhagem Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fosforilação , RNA Mensageiro/genética
4.
Oncotarget ; 11(19): 1691-1704, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477459

RESUMO

Ewing sarcoma (ES) is a malignant pediatric bone and soft tissue tumor. Patients with metastatic ES have a dismal outcome which has not been improved in decades. The major challenge in the treatment of metastatic ES is the lack of specific targets and rational combinatorial therapy. We recently found that protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is specifically highly expressed in ES and promotes tumor growth and metastasis in ES. In the current investigation, we show that PPP1R1A regulates ES cell cycle progression in G1/S phase by down-regulating cell cycle inhibitors p21Cip1 and p27Kip1, which leads to retinoblastoma (Rb) protein hyperphosphorylation. In addition, we show that PPP1R1A promotes normal transcription of histone genes during cell cycle progression. Importantly, we demonstrate a synergistic/additive effect of the combinatorial therapy of PPP1R1A and insulin-like growth factor 1 receptor (IGF-1R) inhibition on decreasing ES cell proliferation and migration in vitro and limiting xenograft tumor growth and metastasis in vivo. Taken together, our findings suggest a role of PPP1R1A as an ES specific cell cycle modulator and that simultaneous targeting of PPP1R1A and IGF-1R pathways is a promising specific and effective strategy to treat both primary and metastatic ES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA