Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
2.
Environ Sci Technol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140966

RESUMO

Diisobutyl phthalate (DiBP) is commonly used in the plastics industry, and recent studies have shown that environmental exposure and accumulation in the food chain caused inflammation in some organs. However, the underlying mechanisms by which DiBP affects oocyte quality have not yet been fully defined. We used immunostaining and fluorescence to evaluate the effects of DiBP exposure and demonstrated that it impaired the morphology of matured porcine oocytes through generation of cytoplasmic fragmentation, accompanied by the perturbed dynamics of the spindle and actin cytoskeleton, misdistributed endoplasmic reticulum, as well as partial exocytosis of cortical granules and ovastacin. Moreover, analysis of Smart RNA-seq found that DiBP-induced aberrant oocyte maturation could be induced by abnormal mitochondrial function and apoptosis. Importantly, we discovered that supplementation with pyrroloquinoline quinone (PQQ) significantly attenuated the meiotic abnormalities induced by DiBP exposure through the modulation of reactive oxygen species levels. Our findings demonstrated that DiBP exposure adversely affects oocyte meiotic maturation and that PQQ supplementation was an effective strategy to protect oocyte quality against DiBP exposure.

3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877666

RESUMO

AIMS: Study of rhizospheric microbiome-mediated plant growth promotional attributes currently highlighted as a key tool for the development of suitable bio-inoculants for sustainable agriculture purposes. In this context, we have conducted a detailed study regarding the characterization of phosphate solubilizing potential by plant growth-promoting bacteria that have been isolated from the rhizosphere of a pteridophyte Dicranopteris sp., growing on the lateritic belt of West Bengal. METHODS AND RESULTS: We have isolated three potent bacterial strains, namely DRP1, DRP2, and DRP3 from the rhizoids-region of Dicranopteris sp. Among the isolated strains, DRP3 is found to have the highest phosphate solubilizing potentiality and is able to produce 655.89 and 627.58 µg ml-1 soluble phosphate by solubilizing tricalcium phosphate (TCP) and Jordan rock phosphate, respectively. This strain is also able to solubilize Purulia rock phosphate moderately (133.51 µg ml-1). Whole-genome sequencing and further analysis of the studied strain revealed the presence of pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase gdh gene along with several others that were well known for their role in phosphate solubilization. Further downstream, quantitative reverse transcriptase PCR-based expression study revealed 1.59-fold upregulation of PQQ-dependent gdh gene during the solubilization of TCP. Root colonization potential of the studied strain on two taxonomically distinct winter crops viz. Cicer arietinum and Triticum aestivum has been checked by using scanning electron microscopy. Other biochemical analyses for plant growth promotion traits including indole acetic acid production (132.02 µg ml-1), potassium solubilization (3 mg l-1), biofilm formation, and exopolymeric substances productions (1.88-2.03 µg ml-1) also has been performed. CONCLUSION: This study highlighted the active involvement of PQQ-dependent gdh gene during phosphate solubilization from any Enterobacter group. Moreover, our study explored different roadmaps for sustainable farming methods and the preservation of food security without endangering soil health in the future.


Assuntos
Produtos Agrícolas , Enterobacter , Fosfatos , Rizosfera , Microbiologia do Solo , Fosfatos/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Solubilidade , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Filogenia , Fosfatos de Cálcio/metabolismo , Ácidos Indolacéticos/metabolismo
4.
FASEB J ; 35(4): e21394, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710654

RESUMO

Pyrroloquinoline quinone (PQQ) has a variety of biological functions. However, rare attention has been paid to its effects on exercise-induced damage. Here, we assessed the potential protective effects of PQQ against the fatigue and oxidative damage caused by repeated exhaustive exercise, and studied the underlying mechanism. The models for exercise-induced fatigue were established, and the parameters were measured, including the time to exhaustion (TTE), biochemical indicators, the expression of nuclear factor kappa B (NF-κB) and inflammatory cytokines and so on. Besides, the mitochondrial function was evaluated by the morphology, membrane potential, respiratory function, adenosine triphosphate (ATP) levels, and the application of the mitochondrial complex I inhibitor. The results demonstrate that PQQ prolongs TTE, causes the decrease in the activity of serum creatine kinase and lactate dehydrogenase, increases the activity of antioxidant enzymes, inhibits the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and diminishes the over expression of NF-κB (p65) and inflammatory mediators. Furthermore, PQQ preserves normal mitochondrial function. Particularly, PQQ reduces the accumulation of ROS triggered by the mitochondrial complex I inhibitor. These data suggest that PQQ can significantly protect mice from exercise-induced fatigue and oxidative damage by improving mitochondrial function. These data also suggest that PQQ controls mitochondrial activity through directly affecting the NADH dehydrogenase.


Assuntos
Fadiga/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cofator PQQ/farmacologia , Condicionamento Físico Animal , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Mioblastos/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142248

RESUMO

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Assuntos
Compostos de Amônio , Methylobacterium extorquens , Oxirredutases do Álcool/metabolismo , Íons , Metanol/metabolismo , Methylobacterium extorquens/genética
6.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432048

RESUMO

Pyrroloquinoline quinone (PQQ) is a powerful antioxidant coenzyme existing in diet, benefiting growth, development, cognition function, and the repair of damaged organs. However, a method for detecting PQQ in vivo was rarely described, limiting the research on the bioanalysis and metabolic properties of PQQ. In this study, a novel, simple, and efficient ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify the concentration of PQQ in rat plasma. Detection through mass spectrometry was operated by multiple reaction monitoring (MRM) in negative electrospray ionization mode with ion transitions m/z 328.99→197.05 for PQQ and m/z 280.04→195.04 for the internal standard. The calibration curves were linear up to 10,000 ng/mL, with a lower limit of quantitation of 10 ng/mL. Inter-run and intra-run precision ranged from 1.79% to 10.73% and accuracy ranged from -7.73% to 7.30%. The method was successfully applied to a toxicokinetic study in Sprague-Dawley rats after the oral administration of PQQ disodium salt at doses of 250 mg/kg, 500 mg/kg, and 1000 mg/kg. The toxicokinetic parameters were subsequently analyzed, which may provide valuable references for the toxicokinetic properties and safety evaluation of PQQ.


Assuntos
Cofator PQQ , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Toxicocinética , Ratos Sprague-Dawley
7.
J Biol Inorg Chem ; 26(2-3): 177-203, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33606117

RESUMO

Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, ß, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.


Assuntos
Álcool Desidrogenase/metabolismo , Cofator PQQ/metabolismo , Álcool Desidrogenase/química , Transporte de Elétrons , Heme/metabolismo
8.
Biosci Biotechnol Biochem ; 85(4): 998-1004, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686415

RESUMO

We characterized the pyrroloquinoline quinone (PQQ)-dependent dehydrogenase 9 (PQQ-DH9) of Gluconobacter sp. strain CHM43, which is a homolog of PQQ-dependent glycerol dehydrogenase (GLDH). We used a plasmid construct to express PQQ-DH9. The expression host was a derivative strain of CHM43, which lacked the genes for GLDH and the membrane-bound alcohol dehydrogenase and consequently had minimal ability to oxidize primary and secondary alcohols. The membranes of the transformant exhibited considerable d-arabitol dehydrogenase activity, whereas the reference strain did not, even if it had PQQ-DH9-encoding genes in the chromosome and harbored the empty vector. This suggests that PQQ-DH9 is not expressed in the genome. The activities of the membranes containing PQQ-DH9 and GLDH suggested that similar to GLDH, PQQ-DH9 oxidized a wide variety of secondary alcohols but had higher Michaelis constants than GLDH with regard to linear substrates such as glycerol. Cyclic substrates such as cis-1,2-cyclohexanediol were readily oxidized by PQQ-DH9.


Assuntos
Gluconobacter/metabolismo , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Álcool Desidrogenase/metabolismo , Genoma Bacteriano , Plasmídeos , Álcoois Açúcares/metabolismo
9.
J Biol Chem ; 294(41): 15025-15036, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427437

RESUMO

Pyrroloquinoline quinone is a prominent redox cofactor in many prokaryotes, produced from a ribosomally synthesized and post-translationally modified peptide PqqA via a pathway comprising four conserved proteins PqqB-E. These four proteins are now fairly well-characterized and span radical SAM activity (PqqE), aided by a peptide chaperone (PqqD), a dual hydroxylase (PqqB), and an eight-electron, eight-proton oxidase (PqqC). A full description of this pathway has been hampered by a lack of information regarding a protease/peptidase required for the excision of an early, cross-linked di-amino acid precursor to pyrroloquinoline quinone. Herein, we isolated and characterized a two-component heterodimer protein from the α-proteobacterium Methylobacterium (Methylorubrum) extorquens that can rapidly catalyze cleavage of PqqA into smaller peptides. Using pulldown assays, surface plasmon resonance, and isothermal calorimetry, we demonstrated the formation of a complex PqqF/PqqG, with a KD of 300 nm We created a molecular model of the heterodimer by comparison with the Sphingomonas sp. A1 M16B Sph2681/Sph2682 protease. Analysis of time-dependent patterns for the appearance of proteolysis products indicates high specificity of PqqF/PqqG for serine side chains. We hypothesize that PqqF/PqqG initially cleaves between the PqqE/PqqD-generated cross-linked form of PqqA, with nonspecific cellular proteases completing the release of a suitable substrate for the downstream enzyme PqqB. The finding of a protease that specifically targets serine side chains is rare, and we propose that this activity may be useful in proteomic analyses of the large family of proteins that have undergone post-translational phosphorylation at serine.


Assuntos
Alphaproteobacteria/enzimologia , Coenzimas/metabolismo , Cofator PQQ/metabolismo , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Oxirredução , Peptídeo Hidrolases/química , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína
10.
Chemistry ; 26(44): 10133-10139, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497263

RESUMO

Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2 PQQ2 , with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151 Eu-Mössbauer spectroscopy, X-ray total scattering, and extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent.

11.
Appl Microbiol Biotechnol ; 104(15): 6615-6622, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529378

RESUMO

Oxygen is a vital parameter for pyrroloquinoline quinone (PQQ) biosynthesis. In this study, the effects of oxygen supply on the biosynthesis of PQQ were first investigated systematically with Hyphomicrobium denitrificans FJNU-6. Following a kinetic analysis of the specific cell growth rate (µx) and specific PQQ formation rate (µp) in 5 L benchtop fermentation systems at various oxygen supply levels ranging from 0 to 60%, a novel, two-stage oxygen supply strategy was developed for enhancing PQQ production and productivity. Moreover, the transcription of genes involved in methanol oxidation and PQQ biosynthesis was analyzed throughout the process to outline the effect of oxygen supply on cell metabolism. Furthermore, with constant feeding of methanol at 0-1 g/L after the initial methanol was consumed completely, the PQQ concentration and productivity reached 1070 mg/L and 7.64 mg/L/h, respectively, after 140 h in a 5-L fermenter. The two-stage oxygen supply strategy developed in this study provides an effective and economical strategy for the industrial production of PQQ.Key Points• A novel, two-stage oxygen supply strategy was developed for enhancing PQQ production and productivity.•The transcription of genes involved in methanol oxidation and PQQ biosynthesis was regulated by changes in oxygen supply.• This study offers an effective and economical strategy for industrial or large-scale production of PQQ.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Fermentação , Hyphomicrobium/metabolismo , Oxigênio/metabolismo , Cofator PQQ/biossíntese , Vias Biossintéticas , Hyphomicrobium/genética , Microbiologia Industrial/métodos , Cinética , Oxirredução
12.
BMC Psychiatry ; 20(1): 106, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143671

RESUMO

BACKGROUND: Clozapine has remarkable efficacy on both negative and cognitive symptoms of schizophrenia due to its slight activation of NMDA receptor. In fact, much evidence to the contrary. NMDAR is a complex containing specific binding sites, which are regulated to improve negative symptoms and cognitive deficits associated with individuals affected by schizophrenia. PQQ is a powerful neuroprotectant that specifically binds with NMDA receptors in the brain to produce beneficial physiological and cognitive outcomes. The aim of this study was to enhance NMDAR function and improve cognitive ability in schizophrenia by PQQ combined with clozapine. METHODS: Rats were divided into four groups (n = 5) including control (saline), model (MK-801, 0.5 mg·kg- 1·d- 1), atypical antipsychotic (MK-801 (0.5 mg·kg- 1·d- 1) + Clozapine (1.0 mg·kg- 1·d- 1), and co-agonist NMDA receptor (MK-801 (0.5 mg·kg- 1·d- 1) + Clozapine (0.5 mg·kg- 1·d- 1) + PQQ (1.0 µg·kg- 1·d- 1) group. Each group of rats was injected subcutaneously every day for 6 weeks. Behavior test, including stereotyped behavior, locomotor hyperactivity, learning and memory, was performed. The Western blot assay was performed to analyze the expression of GSK-3ß, Akt, NMDAR1, and MGLUR in rat hippocampus. RESULTS: Results indicated that clozapine and PQQ combination therapy can improve MK801-induced schizophrenia behavior including stereotyped behavior, locomotor hyperactivity and cognitive impairment. Furthermore, we found that modulating NMDA receptors could ameliorate the memory impairments in Mk-801 induced schizophrenia rats by reducing the expression of NMDAR1 and MGLUR3, decreasing hippocampal tau hyperphosphorylation and inhibiting apoptosis through Akt /GSK-3ß signaling pathway. CONCLUSIONS: These findings suggest that combination therapy for enhancing NMDA receptors may be able to rescue cognition deficit in schizophrenia. More studies are needed to better elucidate these mechanisms.


Assuntos
Antipsicóticos , Clozapina , Disfunção Cognitiva , Esquizofrenia , Animais , Antipsicóticos/uso terapêutico , Clozapina/farmacologia , Clozapina/uso terapêutico , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Humanos , Ratos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
13.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977419

RESUMO

Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson's disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Microglia/citologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cofator PQQ/farmacologia , Rotenona/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Fármacos Neuroprotetores/uso terapêutico , Cofator PQQ/uso terapêutico
14.
Br J Nutr ; 121(7): 818-830, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30688182

RESUMO

The objective of this study was to investigate the effects of dietary pyrroloquinoline quinone disodium (PQQ·Na2) supplementation on the reproductive performance and intestinal barrier functions of gestating and lactating female Sprague-Dawley (SD) rats and their offspring. Dietary supplementation with PQQ·Na2 increased the number of implanted embryos per litter during gestation and lactation at GD 20 and increased the number of viable fetuses per litter, and the weight of uterine horns with fetuses increased at 1 d of newborn. The mRNA expression levels of catalase (CAT), glutathione peroxidase (GPx2), superoxide dismutase (SOD1), solute carrier family 2 member 1 (Slc2a1) and solute carrier family 2 member 3 (Slc2a3) in the placenta were increased with dietary PQQ·Na2 supplementation. Dietary supplementation with PQQ·Na2 in gestating and lactating rats increased the CAT, SOD and GPx activities of the jejunal mucosa of weaned rats on PD 21. Dietary supplementation with PQQ·Na2 in female rats affected the expression of tight junction proteins (claudin, zonula occludens-1 (ZO-1) and occludin) in the jejunal mucosa of their offspring by increasing the expression of ZO-1 mRNA in the expression of ZO-1 and claudin mRNA in the jejunal mucosa of weaned rats on PD 21. In conclusion, dietary supplementation with PQQ·Na2 in gestating and lactating female rats had positive effects on their reproductive performance and on the intestinal barrier of weaned rats.


Assuntos
Suplementos Nutricionais , Mucosa Intestinal/efeitos dos fármacos , Lactação/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Cofator PQQ/administração & dosagem , Reprodução/efeitos dos fármacos , Ração Animal , Animais , Feminino , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Desmame
16.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602785

RESUMO

Fungi secrete a set of glycoside hydrolases and oxidoreductases, including lytic polysaccharide monooxygenases (LPMOs), for the degradation of plant polysaccharides. LPMOs catalyze the oxidative cleavage of glycosidic bonds after activation by an external electron donor. So far, only flavin-dependent oxidoreductases (from the auxiliary activity [AA] family AA3) have been shown to activate LPMOs. Here, we present LPMO activation by a pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase (PDH) from Coprinopsis cinerea, CcPDH, the founding member of the recently discovered auxiliary activity family AA12. CcPDH contains a C-terminal family 1 carbohydrate binding module (CBM1), an N-terminal family AA8 cytochrome domain, and a central AA12 dehydrogenase domain. We have studied the ability of full-length CcPDH and its truncated variants to drive catalysis by two Neurospora crassa LPMOs. The results show that CcPDH indeed can activate the C-1-oxidizing N. crassa LPMO 9F (NcLPMO9F) and the C-4-oxidizing Neurospora crassa LPMO 9C (NcLPMO9C), that this activation depends on the cytochrome domain, and that the dehydrogenase and the LPMO reactions are strongly coupled. The two tested CcPDH-LPMO systems showed quite different efficiencies, and this difference disappeared upon the addition of free PQQ acting as a diphenol/quinone redox mediator, showing that LPMOs differ when it comes to their direct interactions with the cytochrome domain. Surprisingly, removal of the CBM domain from CcPDH had a considerable negative impact on the efficiency of the CcPDH-LPMO systems, suggesting that electron transfer in the vicinity of the substrate is beneficial. CcPDH does not oxidize cello-oligosaccharides, which makes this enzyme a useful tool for studying cellulose-oxidizing LPMOs.IMPORTANCE Lytic polysaccharide monooxygenases (LPMOs) are currently receiving increasing attention because of their importance in degrading recalcitrant polysaccharides and their potential roles in biological processes, such as bacterial virulence. LPMO action requires an external electron donor, and fungi growing on biomass secrete various so-called glucose-methanol-choline (GMC) oxidoreductases, including cellobiose dehydrogenase, which can donate electrons to LPMOs. This paper describes how an enzyme not belonging to the GMC oxidoreductase family, CcPDH, can activate LPMOs, and it provides new insights into the activation process by (i) describing the roles of individual CcPDH domains (a dehydrogenase, a cytochrome, and a carbohydrate-binding domain), (ii) showing that the PDH and LPMO enzyme reactions are strongly coupled, (iii) demonstrating that LPMOs differ in terms of their efficiencies of activation by the same activator, and (iv) providing indications that electron transferring close to the substrate surface is beneficial for the overall efficiency of the CcPDH-LPMO system.


Assuntos
Agaricales/enzimologia , Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Polissacarídeos/metabolismo , Transporte de Elétrons , Proteínas Fúngicas/metabolismo , Oxirredução
17.
J Am Coll Nutr ; 37(8): 738-748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29714638

RESUMO

KEY TEACHING POINTS: • Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function.• Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential.• There is emerging evidence to support that PQQ supplementation can upregulate the molecular signaling responses indicative of mitochondrial biogenesis within skeletal muscle.• If both endurance exercise and PQQ supplementation can elicit increases in the molecular responses indicative of mitochondrial biogenesis, it is possible that both PQQ and exercise may instigate a synergistic ergogenic response.• There is a scarcity of research exploring the possible role of PQQ supplementation with concomitant endurance exercise. Therefore, future research is necessary to investigate the ergogenic potential behind PQQ supplementation in conjunction with endurance exercise.

18.
J Biol Chem ; 291(17): 8877-84, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26961875

RESUMO

The radical S-adenosylmethionine (SAM) protein PqqE is predicted to function in the pyrroloquinoline quinone (PQQ) biosynthetic pathway via catalysis of carbon-carbon bond formation between a glutamate and tyrosine side chain within the small peptide substrate PqqA. We report here that PqqE activity is dependent on the accessory protein PqqD, which was recently shown to bind PqqA tightly. In addition, PqqE activity in vitro requires the presence of a flavodoxin- and flavodoxin reductase-based reduction system, with other reductants leading to an uncoupled cleavage of the co-substrate SAM. These results indicate that PqqE, in conjunction with PqqD, carries out the first step in PQQ biosynthesis: a radical-mediated formation of a new carbon-carbon bond between two amino acid side chains on PqqA.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Mycobacterium/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Endopeptidases/química , Endopeptidases/genética , Mycobacterium/química , Mycobacterium/genética
19.
J Biol Inorg Chem ; 22(7): 1089-1097, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825148

RESUMO

PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-ß-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.


Assuntos
Proteínas de Bactérias/metabolismo , Metais/metabolismo , Pseudomonas putida/enzimologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Metais/química , Modelos Moleculares , Cofator PQQ/metabolismo , Ligação Proteica , Conformação Proteica , Infecções por Pseudomonas/microbiologia , Pseudomonas putida/química , Pseudomonas putida/metabolismo , beta-Lactamases/química
20.
Appl Microbiol Biotechnol ; 101(12): 4915-4922, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28374050

RESUMO

The effects of pH control strategy and fermentative operation modes on the biosynthesis of pyrroloquinoline quinine (PQQ) were investigated systematically with Methylobacillus sp. CCTCC M2016079 in the present work. Firstly, the shake-flask cultivations and benchtop fermentations at various pH values ranging from 5.3 to 7.8 were studied. Following a kinetic analysis of specific cell growth rate (µ x ) and specific PQQ formation rate (µ p ), the discrepancy in optimal pH values between cell growth and PQQ biosynthesis was observed, which stimulated us to develop a novel two-stage pH control strategy. During this pH-shifted process, the pH in the broth was controlled at 6.8 to promote the cell growth for the first 48 h and then shifted to 5.8 to enhance the PQQ synthesis until the end of fermentation. By applying this pH-shifted control strategy, the maximum PQQ production was improved to 158.61 mg/L in the benchtop fermenter, about 44.9% higher than that under the most suitable constant pH fermentation. Further fed-batch study showed that PQQ production could be improved from 183.38 to 272.21 mg/L by feeding of methanol at the rate of 11.5 mL/h in this two-stage pH process. Meanwhile, the productivity was also increased from 2.02 to 2.84 mg/L/h. In order to support cell growth during the shifted pH stage, the combined feeding of methanol and yeast extract was carried out, which brought about the highest concentration (353.28 mg/L) and productivity (3.27 mg/L/h) of PQQ. This work has revealed the potential of our developed simple and economical strategy for the large-scale production of PQQ.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Methylobacillus/crescimento & desenvolvimento , Methylobacillus/metabolismo , Cofator PQQ/biossíntese , Técnicas de Cultura Celular por Lotes/economia , Biomassa , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA