Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 125, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333852

RESUMO

BACKGROUND: Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS: The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS: PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS: Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , MicroRNAs , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Humanos , Camundongos Knockout , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612399

RESUMO

Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.


Assuntos
Neoplasias Ósseas , Flavonoides , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt
3.
J Virol ; 96(17): e0083622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35946936

RESUMO

The mechanism by which avian reovirus (ARV)-modulated suppression of mTORC1 triggers autophagy remains largely unknown. In this work, we determined that p17 functions as a negative regulator of mTORC1. This study suggest novel mechanisms whereby p17-modulated inhibition of mTORC1 occurs via upregulation of p53, inactivation of Akt, and enhancement of binding of the endogenous mTORC1 inhibitors (PRAS40, FKBP38, and FKPP12) to mTORC1 to disrupt its assembly and accumulation on lysosomes. p17-modulated inhibition of Akt leads to activation of the downstream targets PRAS40 and TSC2, which results in mTORC1 inhibition, thereby triggering autophagy and translation shutoff, which is favorable for virus replication. p17 impairs the interaction of mTORC1 with its activator Rheb, which promotes FKBP38 interaction with mTORC1. It is worth noting that p17 activates ULK1 and Beclin1 and increases the formation of the Beclin 1/class III PI3K complex. These effects could be reversed in the presence of insulin or depletion of p53. Furthermore, we found that p17 induces autophagy in cancer cell lines by upregulating the p53/PTEN pathway, which inactivates Akt and mTORC1. This study highlights p17-modulated inhibition of Akt and mTORC1, which triggers autophagy and translation shutoff by positively modulating the tumor suppressors p53 and TSC2 and endogenous mTORC1 inhibitors. IMPORTANCE The mechanisms by which p17-modulated inhibition of mTORC1 induces autophagy and translation shutoff is elucidated. In this work, we determined that p17 serves as a negative regulator of mTORC1. This study provides several lines of conclusive evidence demonstrating that p17-modulated inhibition of mTORC1 occurs via upregulation of the p53/PTEN pathway, downregulation of the Akt/Rheb/mTORC1 pathway, enhancement of binding of the endogenous mTORC1 inhibitors to mTORC1 to disrupt its assembly, and suppression of mTORC1 accumulation on lysosomes. This work provides valuable information for better insights into p17-modulated inhibition of mTORC1, which induces autophagy and translation shutoff to benefit virus replication.


Assuntos
Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Orthoreovirus Aviário , Proteínas Adaptadoras de Transdução de Sinal , Autofagia , Linhagem Celular Tumoral , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Orthoreovirus Aviário/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a Tacrolimo , Proteína 2 do Complexo Esclerose Tuberosa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cancer Sci ; 113(9): 3018-3031, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35635239

RESUMO

Previous studies have reported that TIFA plays different roles in various tumor types. However, the function of TIFA in colorectal cancer (CRC) remains unclear. Here, we showed that the expression of TIFA was markedly increased in CRC versus normal tissue, and positively correlated with CRC TNM stages. In agreement, we found that the CRC cell lines show increased TIFA expression levels versus normal control. The knockdown of TIFA inhibited cell proliferation but had no effect on cell apoptosis in vitro or in vivo. Moreover, the ectopic expression of TIFA enhanced cell proliferation ability in vitro and in vivo. In contrast, the expression of mutant TIFA (T9A, oligomerization site mutation; D6, TRAF6 binding site deletion) abolished TIFA-mediated cell proliferation enhancement. Exploration of the underlying mechanism revealed that the protein synthesis-associated kinase RSK and PRAS40 activation were responsible for TIFA-mediated CRC progression. In summary, these findings suggest that TIFA plays a role in mediating CRC progression. This could provide a promising target for CRC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Proteínas Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
5.
Biochem Biophys Res Commun ; 545: 183-188, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561653

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Diferenciação Celular , Regulação para Baixo , Humanos , Mucosa Intestinal/citologia , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Proteína Regulatória Associada a mTOR/química , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Mol Biol Rep ; 48(6): 5083-5091, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34165769

RESUMO

Numerous studies have reported that epilepsy causes memory deficits. The present study was aimed at studying the effect of rapamycin against the memory deficiency of the pentylenetetrazole (PTZ)-kindled animal model of epilepsy. In the present experiment, we randomly chose thirty male rats from the species of Wistar and categorized them in groups of control and experiment (6 for each group). The groups of experiment received the injection of rapamycin (0.5, 1 and 2 mg/kg) intraperitoneally (i.p.) and the group of control received normal saline (0.9%) treatment. Through the PTZ's sub-threshold dose (35 mg kg-1, i.p.), all groups were kindled 12 times. Passive avoidance test (PAT) was used for gauging the memory function and the seizure behaviors after the kindling procedure. The rodents were sacrificed at the end of the trial and their brains were scooped for measuring the expression of Gabra1 and Pras40 genes. Statistical analysis unveiled that rapamycin delayed the kindling development and the onset of seizures which are tonic-clonic. Moreover, the administration of rapamycin significantly prevented memory dysfunction in epileptic rats. Finally, it was shown that rapamycin resulted in an increase in the expression levels of Gabra1 and Pras40 genes at the brain tissues. The current research design indicated that rapamycin has beneficial effects for the prevention of memory impairment against PTZ-kindling epilepsy in rats. Such promising outcomes could be attributed to its impact on the Gabra1 and Pras40 genes.


Assuntos
Transtornos da Memória/tratamento farmacológico , Neurônios/metabolismo , Sirolimo/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Excitação Neurológica/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Pentilenotetrazol/efeitos adversos , Pentilenotetrazol/farmacologia , Ratos , Ratos Wistar , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Sirolimo/metabolismo
7.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899862

RESUMO

Recently, we have reported that blockade/deletion of P2X7 receptor (P2X7R), an ATP-gated ion channel, exacerbates heat shock protein 25 (HSP25)-mediated astroglial autophagy (clasmatodendrosis) following kainic acid (KA) injection. In P2X7R knockout (KO) mice, prolonged astroglial HSP25 induction exerts 5' adenosine monophosphate-activated protein kinase/unc-51 like autophagy activating kinase 1-mediated autophagic pathway independent of mammalian target of rapamycin (mTOR) activity following KA injection. Sustained HSP25 expression also enhances AKT-serine (S) 473 phosphorylation leading to astroglial autophagy via glycogen synthase kinase-3ß/bax interacting factor 1 signaling pathway. However, it is unanswered how P2X7R deletion induces AKT-S473 hyperphosphorylation during autophagic process in astrocytes. In the present study, we found that AKT-S473 phosphorylation was increased by enhancing activity of focal adhesion kinase (FAK), independent of mTOR complex (mTORC) 1 and 2 activities in isolated astrocytes of P2X7R knockout (KO) mice following KA injection. In addition, HSP25 overexpression in P2X7R KO mice acted as a chaperone of AKT, which retained AKT-S473 phosphorylation by inhibiting the pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1- and 2-binding to AKT. Therefore, our findings suggest that P2X7R may be a fine-tuner of AKT-S473 activity during astroglial autophagy by regulating FAK phosphorylation and HSP25-mediated inhibition of PHLPP1/2-AKT binding following KA treatment.


Assuntos
Astrócitos/metabolismo , Autofagia/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Choque Térmico/metabolismo , Ácido Caínico/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Receptores Purinérgicos P2X7/genética , Convulsões/metabolismo , Convulsões/prevenção & controle , Serina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Cell Mol Neurobiol ; 36(5): 821-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26526334

RESUMO

Proline-rich Akt substrate of 40-kDa (PRAS40) is one of the important interactive linkers between Akt and mTOR signaling pathways. The increase of PRAS40 is related with the reduction of brain damage induced by cerebral ischemia. In the present study, we investigated time-dependent changes in PRAS40 and phospho-PRAS40 (p-PRAS40) immunoreactivities in the hippocampal CA1 region of the gerbil after 5 min of transient cerebral ischemia. PRAS40 immunoreactivity in the CA1 region was decreased in pyramidal neurons from 12 h after ischemic insult in a time-dependent manner, and, at 5 days post-ischemia, PRAS40 immunoreactivity was newly expressed in astrocytes. p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was hardly found 12 h and apparently detected again 1 and 2 days after ischemic insult. At 5 days post-ischemia, p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was not found. These results indicate that ischemia-induced changes in PRAS40 and p-PRAS40 immunoreactivities in CA1 pyramidal neurons and astrocytes may be closely associated with delayed neuronal death in the hippocampal CA1 region following transient cerebral ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Ataque Isquêmico Transitório/metabolismo , Células Piramidais/metabolismo , Animais , Morte Celular/fisiologia , Gerbillinae , Imuno-Histoquímica/métodos
9.
Biochem Biophys Res Commun ; 463(3): 161-6, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26003731

RESUMO

Dysregulation of PI3K-AKT-mTOR pathway has been reported in various pathologies, such as cancer and insulin resistance. The proline-rich AKT substrate of 40-kDa (PRAS40), also known as AKT substrate 1 (AKT1S1), lies at the crossroads of these cascades and inhibits the activity of the mTOR complex 1 (mTORC1) kinase. This review discusses the role of PRAS40 and possible feedback mechanisms, and alterations in AKT/PRAS40/mTOR signaling that have been implicated in the pathogenesis of tumor progression. Additionally, we probed new datasets extracted from Oncomine, a cancer microarray database containing datasets derived from patient samples, to further understand the role of PRAS40 (AKT1S1). These data strongly supports the hypothesis that PRAS40 may serve as a potential therapeutic target for various cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo
10.
J Proteome Res ; 13(12): 5734-42, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25311616

RESUMO

Resveratrol, a plant-derived polyphenol, regulates many cellular processes, including cell proliferation, aging and autophagy. However, the molecular mechanisms of resveratrol action in cells are not completely understood. Intriguingly, resveratrol treatment of cells growing in nutrient-rich conditions induces autophagy, while acute resveratrol treatment of cells in a serum-deprived state inhibits autophagy. In this study, we performed a phosphoproteomic analysis after applying resveratrol to serum-starved cells with the goal of identifying the acute signaling events initiated by resveratrol in a serum-deprived state. We determined that resveratrol in serum-starved conditions reduces the phosphorylation of several proteins belonging to the mTORC1 signaling pathway, most significantly, PRAS40 at T246 and S183. Under these same conditions, we also found that resveratrol altered the phosphorylation of several proteins involved in various biological processes, most notably transcriptional modulators, represented by p53, FOXA1, and AATF. Together these data provide a more comprehensive view of both the spectrum of phosphoproteins upon which resveratrol acts as well as the potential mechanisms by which it inhibits autophagy in serum-deprived cells.


Assuntos
Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/efeitos dos fármacos , Cromatografia Líquida , Meios de Cultura Livres de Soro/farmacologia , Humanos , Immunoblotting , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteoma/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
11.
Neurobiol Dis ; 66: 43-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24583056

RESUMO

The proline-rich Akt substrate of 40kDa (PRAS40) protein is not only a substrate of the protein kinase Akt but also a component of the mTOR complex 1 (mTORC1), thus it links the Akt and the mTOR pathways. We investigated the potential protective role of PRAS40 in cerebral ischemia and its underlying mechanisms by using rats with lentiviral over-expression of PRAS40 and mice with PRAS40 gene knockout (PRAS40 KO). Our results show that gene transfer of PRAS40 reduced infarction size in rats by promoting phosphorylation of Akt, FKHR (FOXO1), PRAS40, and mTOR. In contrast, PRAS40 KO increased infarction size. Although the PRAS40 KO under normal condition did not alter baseline levels of phosphorylated proteins in the Akt and mTOR pathways, PRAS40 KO that underwent stroke exhibited reduced protein levels of p-S6K and p-S6 in the mTOR pathway but not p-Akt, or p-PTEN in the Akt pathway. Furthermore, co-immunoprecipitation suggests that there were less interactive effects between Akt and mTOR in the PRAS40 KO. In conclusion, PRAS40 appears to reduce brain injury by converting cell signaling from Akt to mTOR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Morte Celular , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Transferência de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fosfoproteínas/genética , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral/patologia
12.
Burns ; 50(4): 936-946, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38369439

RESUMO

BACKGROUND: To identify the anti-fibrosis effect of PRAS40 in scar, and its potential mechanism. METHODS: We constructed a rat model of hypertrophic scarthat was locally injected the PRAS40 overexpression adenoviruses, mTORC1 inhibitor MHY1485 and activator rapamycin, and further observed the pathological changes of skin tissue and the severity of fibrosis by HE, Masson and sirius red staining, and analyzed the deposition of a-SMA and collagen I by western blot and immunofluorescence test. Meanwhile, the co-localization of KLF4 with a-SMA and type I collagen was analyzed, as well as the regulatory effect of PRAS40 on KLF4. In addition, we also verified whether the inhibition of scar fibrosis by PRAS40 is related to mTORC1, and whether the upregulation of KLF4 is related to mTORC1. RESULTS: The results showed that the expression of PRAS40 was low and p-PRAS40 was high in scar skin tissue. After local injection of PRAS40 overexpression adenovirus, the expression of PRAS40 in skin tissue was increased. The overexpression of PRAS40 can inhibit scar skin fibrosis and reduce the content of a-SMA and collagen I. Further mechanism analysis confirms that the inhibitory effect of PRAS40 on skin fibrosis is related to mTORC1, and PRAS40 inhibits the activation of mTORC1. The expression of KLF4 is relatively low in scar tissue. PRAS40 administration upregulated the expression of KLF4, which is related to mTORC1 CONCLUSIONS: PRAS40 significantly improves fibrosis of scar skin tissue and increases the expression of KLF4 in scars. The anti-fibrotic effect of PRAS40 depends on mTORC1.


Assuntos
Cicatriz Hipertrófica , Fibrose , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fibrose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ratos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/prevenção & controle , Colágeno Tipo I/metabolismo , Pele/metabolismo , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Actinas/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Masculino , Regulação para Cima , Colágeno/metabolismo
13.
Front Pharmacol ; 15: 1339956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318139

RESUMO

Objective: The PRAS40 is an essential inhibitory subunit of the mTORC1 complex, which regulates autophagy. It has been suggested that Erxian Decoction (EXD) could treat spinal cord injury (SCI) via the autophagy pathway. However, the mechanism of whether EXD acts through PRAS40 remains unclear. Methods: With the help of immobilized PRAS40, isothermal titration calorimetry (ITC) and molecular docking, the bioactive metabolites in the EXD were screened. To establish in vitro SCI models, PC12 cells were exposed to hydrogen peroxide (H2O2) and then treated with the identified EXD substances. Furthermore, Western blot assay was carried out to identify potential molecular mechanisms involved. For assessing the effect of metabolites in vivo, the SCI model rats were first pretreated with or without the metabolite and then subjected to the immunohistochemistry (IHC) staining, Basso, Beattie & Bresnahan (BBB) locomotor rating scale, and H&E staining. Results: The immobilized PRAS40 isolated indole, 4-nitrophenol, terephthalic acid, palmatine, sinapinaldehyde, and 3-chloroaniline as the potential ligands binding to PRAS40. Furthermore, the association constants of palmatine and indole as 2.84 × 106 M-1 and 3.82 × 105 M-1 were elucidated via ITC due to the drug-like properties of these two metabolites. Molecular docking results also further demonstrated the mechanism of palmatine binding to PRAS40. Western blot analysis of PC12 cells demonstrated that palmatine inhibited the expression of p-mTOR by binding to PRAS40, activating the autophagic flux by markedly increasing LC3. The injection of palmatine (10µM and 20 µM) indicated notably increased BBB scores in the SCI rat model. Additionally, a dose-dependent increase in LC3 was observed by IHC staining. Conclusion: This research proved that EXD comprises PRAS40 antagonists, and the identified metabolite, palmatine, could potentially treat SCI by activating the autophagic flux.

14.
Mol Neurobiol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816674

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aß and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aß42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aß-mediated increase in mTOR activity, indicating that the accumulation of Aß may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aß-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.

15.
Front Med (Lausanne) ; 9: 823994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547213

RESUMO

Background: The circulating progenitor cells of fibroblasts (fibrocytes) have been shown to infiltrate the airway smooth muscle compartment of asthma patients; however, the pathological significance of this discovery has yet to be elucidated. This study established a co-culture model of airway smooth muscle cells (ASMCs) and fibrocytes from asthmatic or normal subjects to evaluate innate cytokine production, corticosteroid responses, and signaling in ASMCs. Methods: CD34+ fibrocytes were purified from peripheral blood of asthmatic (Global Initiative for Asthma treatment step 4-5) and normal subjects and cultured for 5∼7 days. In a transwell plate, ASMCs were co-cultured with fibrocytes at a ratio of 2:1, ASMCs were cultured alone (control condition), and fibrocytes were cultured alone for 48 h. Measurements were obtained of interleukin-8 (IL-8), IL-6, IL-17, thymic stromal lymphopoietin, and IL-33 levels in the supernatant and IL-33 levels in the cell lysate of the co-culture. Screening for intracellular signaling in the ASMCs after stimulation was performed using condition medium from the patients' co-culture (PtCM) or IL-8. mRNA and western blot analysis were used to analyze AKT/mTOR signaling in ASMCs stimulated via treatment with PtCM or IL-8. Results: Compared with ASMCs cultured alone, IL-8 levels in the supernatant and IL-33 levels in the ASMCs lysate were significantly higher in samples co-cultured from asthmatics, but not in those co-cultured from normal subjects. Corticosteroid-induced suppression of IL-8 production was less pronounced in ASMCs co-cultured with fibrocytes from asthma patients than in ASMCs co-cultured from normal subjects. ASMCs stimulated using PtCM and IL-8 presented elevating activated AKT substrate PRAS40. Treatment with IL-8 and PtCM increased mRNA expression of mTOR and P70S6 kinases in ASMCs. Treatment with IL-8 and PtCM also significantly increased phosphorylation of AKT and mTOR subtract S6 ribosomal protein in ASMCs. Conclusion: The interaction between ASMCs and fibrocytes from asthmatic patients was shown to increase IL-8 and IL-33 production and promote AKT/mTOR signaling in ASMCs. IL-8 production in the co-culture from asthmatic patients was less affected by corticosteroid than was that in the co-culture from normal subjects. Our results elucidate the novel role of fibrocytes and ASMCs in the pathogenesis of asthma.

16.
Cell Signal ; 78: 109842, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33234350

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a central modulator of inflammation and tumorigenesis in the gastrointestinal tract. Growth factors upregulate mTORC1 via the PI3K/AKT and/or Ras/MAPK signal pathways. Curcumin (CUR), a polyphenol found in turmeric roots (Curcuma longa) can repress mTORC1 kinase activity in colon cancer cell lines; however, key aspects of CUR mechanism of action remain to be elucidated including its primary cellular target. We investigated the molecular effects of physiologically attainable concentration of CUR (20 µM) in the intestinal lumen on mTORC1 signaling in Caco-2 cells. CUR markedly inhibited mTORC1 kinase activity as determined by the decreased phosphorylation of p70S6K (Thr389, -99%, P < 0.0001) and S6 (Ser235/236, -92%, P < 0.0001). Mechanistically, CUR decreased IRS-1 protein abundance (-80%, P < 0.0001) thereby downregulating AKT phosphorylation (Ser473, -94%, P < 0.0001) and in turn PRAS40 phosphorylation (Thr246, -99%, P < 0.0001) while total PRAS40 abundance was unchanged. The use of proteasome inhibitor MG132 showed that CUR-mediated loss of IRS-1 involved proteasomal degradation. CUR lowered Raptor protein abundance, which combined with PRAS40 hypophosphorylation, suggests CUR repressed mTORC1 activity by inducing compositional changes that hinder the complex assembly. In addition, CUR activated AMPK (Thr172 phosphorylation, P < 0.0001), a recognized repressor of mTORC1, and AMPK upstream regulator LKB1. Although cargo adapter protein p62 was decreased by CUR (-49%, P < 0.004), CUR did not significantly induce autophagy. Inhibition of AKT/mTORC1 signaling by CUR may have lifted the cross-inhibition onto MAPK signaling, which became induced; p-ERK1/2 (+670%, P < 0.0001), p-p38 (+1433%, P < 0.0001). By concomitantly targeting IRS-1 and AMPK, CUR's mechanism of mTORC1 inhibition is distinct from that of rapamycin.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Substratos do Receptor de Insulina/deficiência , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Células CACO-2 , Curcumina , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
17.
Int J Oncol ; 59(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523696

RESUMO

Mechanistic target of rapamycin (mTOR), which functions via two multiprotein complexes termed mTORC1 and mTORC2, is positioned in the canonical phosphoinositide 3­kinase­related kinase (PI3K)/AKT (PI3K/AKT) pathways. These complexes exert their actions by regulating other important kinases, such as 40S ribosomal S6 kinases (S6K), eukaryotic translation initiation factor 4E (elF4E)­binding protein 1 (4E­BP1) and AKT, to control cell growth, proliferation, migration and survival in response to nutrients and growth factors. Glioblastoma (GB) is a devastating form of brain cancer, where the mTOR pathway is deregulated due to frequent upregulation of the Receptor Tyrosine Kinase/PI3K pathways and loss of the tumor suppressor phosphatase and tensin homologue (PTEN). Rapamycin and its analogs were less successful in clinical trials for patients with GB due to their incomplete inhibition of mTORC1 and the activation of mitogenic pathways via negative feedback loops. Here, the effects of selective ATP­competitive dual inhibitors of mTORC1 and mTORC2, Torin1, Torin2 and XL388, are reported. Torin2 exhibited concentration­dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E­BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell migration, proliferation and S­phase entry. Torin1 demonstrated similar effects, but only at higher doses. XL388 suppressed cell proliferation at a higher dose, but failed to inhibit cell migration. Treatment with Torin1 suppressed phosphorylation of proline rich AKT substrate of 40 kDa (PRAS40) at Threonine 246 (PRAS40Thr246) whereas Torin2 completely abolished it. XL388 treatment suppressed the phosphorylation of PRAS40Thr246 only at higher doses. Drug resistance analysis revealed that treatment of GB cells with XL388 rendered partial drug resistance, which was also seen to a lesser extent with rapamycin and Torin1 treatments. However, treatment with Torin2 completely eradicated the tumor cell population. These results strongly suggest that Torin2, compared to Torin1 or XL388, is more effective in suppressing mTORC1 and mTORC2, and therefore in the inhibition of the GB cell proliferation, dissemination and in overcoming resistance to therapy. These findings underscore the significance of Torin2 in the treatment of GB.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Inibidores de MTOR/farmacologia , Naftiridinas/farmacologia , Sulfonas/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores
18.
J Drug Target ; 29(7): 703-715, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33504218

RESUMO

Proline-rich Akt substrate of 40 kD (PRAS40) is not only the substrate of protein kinase B (PKB/Akt), but also the binding protein of 14-3-3 protein. PRAS40 is expressed in a variety of tissues in vivo and has multiple phosphorylation sites, which its activity is closely related to phosphorylation. Studies have shown that PRAS40 is involved in regulating cell growth, cell apoptosis, oxidative stress, autophagy and angiogenesis, as well as various of signalling pathways such as mammalian target of mammalian target rapamycin (mTOR), protein kinase B (PKB/Akt), nuclear factor kappa-B(NF-κB), proto-oncogene serine/threonine-protein kinase PIM-1(PIM1) and pyruvate kinase M2 (PKM2). The interactive roles between PRAS40 and these signal proteins were analysed by bioinformatics in this paper. Moreover, it is of great necessity for analyse the important roles of PRAS40 in some human diseases including cardiovascular disease, ischaemia-reperfusion injury, neurodegenerative disease, cancer, diabetes and other metabolic diseases. Finally, the effects of miRNA on the regulation of PRAS40 function and the occurrence and development of PRAS40-related diseases are also discussed. Overall, PRAS40 is expected to be a drug target and provide a new treatment strategy for human diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Terapia de Alvo Molecular , Animais , Humanos , MicroRNAs/genética , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
19.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175438

RESUMO

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Assuntos
Neurônios Dopaminérgicos , Estresse Oxidativo , Animais , Apoptose , Morte Celular , Camundongos , Espécies Reativas de Oxigênio
20.
Cancer Biol Med ; 17(3): 664-675, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32944398

RESUMO

Objective: Mesenchymal subtype of glioblastoma (mesGBM) is a refractory disease condition characterized by therapeutic failure and tumor recurrence. Hyperactive transforming growth factor-ß (TGF-ß) signaling could be a signature event in mesGBM, which leads to dysregulation of downstream targets and contribute to malignant transformation. In this study we aimed to investigate the hyperactive TGFß signaling-mediated pathogenesis and possible downstream targets for the development of novel therapeutic interventions for mesGBM. Methods: GBM-BioDP is an online resource for accessing and displaying interactive views of the TCGA GBM data set. Transcriptomic sequencing followed by bioinformatic analysis was performed to identify dysregulated microRNAs. Target prediction by MR-microT and dual luciferase reporter assay were utilized to confirm the predicted target of novel_miR56. CCK-8 assays was used to assesse cell viability. The miRNA manipulation was proceeded by cell transfection and lentivirus delivery. A plasmid expressing GFP-LC3 was introduced to visualize the formation of autophagosomes. Orthotopic GBM model was constructed for in vivo study. Results: TGFß1 and TGFß receptor type II (TßRII) were exclusively upregulated in mesGBM (P < 0.01). Dysregulated miRNAs were identified after LY2109761 (a TßRI/II inhibitor) treatment in a mesGBM-derived cell line, and novel_miR56 was selected as a promising candidate for further functional verification. Novel_miR56 was found to potentially bind to PRAS40 via seed region complementarity in the 3' untranslated region, and we also confirmed that PRAS40 is a direct target of novel_miR56 in glioma cells. In vitro, over expression of novel_miR56 in tumor cells significantly promoted proliferation and inhibited autophagy (P < 0.05). The expression levels of P62/SQSTM was significantly increased accompanied by the decrease of BECN1 and LC3B-II/I, which indicated that autophagic activity was reduced after novel_miR56 treatment. In addition, over expression of novel_miR56 also promoted tumor growth and inhibited autophagy in vivo, which is associated with worse prognosis (P < 0.05). Conclusions: In summary, we provide novel insight into TGFß signaling-mediated pathogenesis in mesGBM and TGFß signaling-induced novel_miR56 may be a novel target for mesGBM management.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , MicroRNAs/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator de Crescimento Transformador beta1/genética , Animais , Autofagia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA