RESUMO
KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.
Assuntos
Fibrilação Atrial , Receptores sigma , Humanos , Células HEK293 , Pulmão/patologia , Artéria Pulmonar , Receptores sigma/metabolismo , Receptor Sigma-1RESUMO
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.
Assuntos
Ansiolíticos , Receptores de GABA-A , Animais , Camundongos , Ansiolíticos/farmacologia , Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Diazepam/farmacologia , Hipnóticos e Sedativos/farmacologia , Ligantes , Camundongos Endogâmicos ICR , Receptores de GABA-A/metabolismo , Relatório de Pesquisa , Receptor Sigma-1RESUMO
Sigma-1 receptor (S1R) is detected in different cell types and can regulate intracellular signaling pathways. S1R plays a role in the pathomechanism of diseases and the regulation of neurotransmitters. Fluvoxamine can bind to S1R and reduce the serotonin uptake of neurons and platelets. We therefore hypothesized that platelets express S1R, which can modify platelet function. The expression of the SIGMAR1 gene in rat platelets was examined with a reverse transcription polymerase chain reaction and a quantitative polymerase chain reaction. The receptor was also visualized by immunostaining and confocal laser scanning microscopy. The effect of S1R agonist PRE-084 on the eicosanoid synthesis of isolated rat platelets and ADP- and AA-induced platelet aggregation was examined. S1R was detected in rat platelets both at gene and protein levels. Pretreatment with PRE-084 of resting platelets induced elevation of eicosanoid synthesis. The rate of elevation in thromboxane B2 and prostaglandin D2 synthesis was similar, but the production of prostaglandin E2 was higher. The concentration-response curve showed a sigmoidal form. The most effective concentration of the agonist was 2 µM. PRE-084 increased the quantity of cyclooxygenase-1 as detected by ELISA. PRE-084 also elevated the ADP- and AA-induced platelet aggregation. S1R of platelets might regulate physiological or pathological functions.
Assuntos
Plaquetas , Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Humanos , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , RatosRESUMO
Alzheimer's disease (AD) is the most common form of dementia characterized by cognitive dysfunctions. Pharmacological interventions to slow the progression of AD are intensively studied. A potential direction targets neuronal sigma-1 receptors (S1Rs). S1R ligands are recognized as promising therapeutic agents that may alleviate symptom severity of AD, possibly via preventing amyloid-ß-(Aß-) induced neurotoxicity on the endoplasmic reticulum stress-associated pathways. Furthermore, S1Rs may also modulate adult neurogenesis, and the impairment of this process is reported to be associated with AD. We aimed to investigate the effects of two S1R agonists, dimethyltryptamine (DMT) and PRE084, in an Aß-induced in vivo mouse model characterizing neurogenic and anti-neuroinflammatory symptoms of AD, and the modulatory effects of S1R agonists were analyzed by immunohistochemical methods and western blotting. DMT, binding moderately to S1R but with high affinity to 5-HT receptors, negatively influenced neurogenesis, possibly as a result of activating both receptors differently. In contrast, the highly selective S1R agonist PRE084 stimulated hippocampal cell proliferation and differentiation. Regarding neuroinflammation, DMT and PRE084 significantly reduced Aß1-42-induced astrogliosis, but neither had remarkable effects on microglial activation. In summary, the highly selective S1R agonist PRE084 may be a promising therapeutic agent for AD. Further studies are required to clarify the multifaceted neurogenic and anti-neuroinflammatory roles of these agonists.
Assuntos
Doença de Alzheimer , Receptores sigma , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , N,N-Dimetiltriptamina , Neurogênese , Doenças Neuroinflamatórias , Fragmentos de Peptídeos , Receptores sigma/metabolismo , Receptor Sigma-1RESUMO
Although opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common drugs used in persistent pain treatment; they have shown many side effects. The development of new analgesics endowed with mu opioid receptor/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR-selective compounds. Moreover, new mechanisms, such as sigma-1 receptor (σ1R) antagonism, could be an opioid adjuvant strategy. The in vitro σ1R and σ2R profiles of previous synthesized MOR/DOR agonists (-)-2R/S-LP2 (1), (-)-2R-LP2 (2), and (-)-2S-LP2 (3) were assayed. To investigate the pivotal role of N-normetazocine stereochemistry, we also synthesized the (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) compounds. (-)-2R/S-LP2 (1), (-)-2R-LP2 (2), and (-)-2S-LP2 (3) compounds have Ki values for σ1R ranging between 112.72 and 182.81 nM, showing a multitarget opioid/σ1R profile. Instead, (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) isomers displayed a nanomolar affinity for σ1R, with significative selectivity vs. σ2R and opioid receptors. All isomers were evaluated using an in vivo formalin test. (-)-2S-LP2, at 0.7 mg/kg i.p., showed a significative and naloxone-reversed analgesic effect. The σ1R selective compound (+)-2R/S-LP2 (7), at 5.0 mg/kg i.p., decreased the second phase of the formalin test, showing an antagonist σ1R profile. The multitarget or single target profile of assayed N-normetazocine derivatives could represent a promising pharmacological strategy to enhance opioid potency and/or increase the safety margin.
Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Ciclazocina/análogos & derivados , Humanos , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Receptores sigma , Receptor Sigma-1RESUMO
Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor impairment and progressive loss of dopamine (DA) neurons. At present, the acute application of neurotoxic drugs such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are commonly used to simulate the pathology of PD; however, it is difficult to induce the progressive pathogenesis of PD with these models. In this study, we employed DAT promoter-mediated Cre transgenic mice to establish tamoxifen-inducible Dicer conditional knockout (cKO) mice in an effort to mimic the progressive loss of DA neurons and the development of PD-like behavioral phenotypes. The results showed that Dicer cKO mice exhibited progressive loss of DA neurons in the substantia nigra (SN) following tamoxifen administration. Significant DA loss was observed 6 weeks after tamoxifen administration; accordingly, progressive motor function impairment was also observed. We also found that a significant neuroinflammatory response, as evidenced by microglial proliferation, another hallmark of PD pathogenesis, accompanied the loss of DA neurons. The acute application of levo-DOPA (L-DOPA) relieved the PD-like motor impairments in Dicer cKO mice to exert its antiparkinsonian action, indicating that the model can be used to evaluate the antiparkinsonian efficacy of PD drugs. To further elucidate the potential application of this novel PD animal model for PD drug development, we employed the powerful neuroprotective agent dihydromyricetin (DHM) (10 mg/kg) and the selective sigma-1 receptor agonist PRE-084 (1 mg/kg), both of which were previously shown to produce antiparkinsonian effects. The results indicated that the chronic administration of either DHM or PRE-084 attenuated the Dicer cKO-induced loss of DA neurons and motor impairments, although the two drugs acted through different mechanisms. These data indicate that the Dicer cKO mouse model may be a useful model for investigating the pathological development of PD and intervention-mediated changes. In conclusion, this transgenic mouse model appears to simulate the progressive pathogenesis of PD and may be a potentially useful model for PD drug discovery.
Assuntos
Antiparkinsonianos/farmacologia , RNA Helicases DEAD-box/antagonistas & inibidores , Flavonóis/farmacologia , Morfolinas/farmacologia , Doença de Parkinson/tratamento farmacológico , Receptores sigma/agonistas , Ribonuclease III/antagonistas & inibidores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/administração & dosagem , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Flavonóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/administração & dosagem , Oxidopamina , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ribonuclease III/metabolismo , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia , Receptor Sigma-1RESUMO
Previously, we demonstrated that the immediate administration of multitarget anxiolytic afobazole slows down the progression of neuronal damage in a 6-hydroxidodamine (6-OHDA) model of Parkinson's disease due to the activation of chaperone Sigma1R. The aim of the present study is to evaluate the therapeutic potential of deferred afobazole administration in this model. Male ICR mice received a unilateral 6-OHDA lesion of the striatum. Fourteen days after the surgery, mice were treated with afobazole, selective Sigma1R agonist PRE-084, selective Sigma1R antagonist BD-1047, and a combination of BD-1047 with afobazole or PRE-084 for another 14 days. The deferred administration of afobazole restored the intrastriatal dopamine content in the 6-OHDA-lesioned striatum and facilitated motor behavior in rotarod tests. The action of afobazole accorded with the effect of Sigma1R selective agonist PRE-084 and was blocked by Sigma1R selective antagonist BD-1047. The present study illustrates the Sigma1R-dependent effects of afobazole in a 6-OHDA model of Parkinson's disease and reveals the therapeutic potential of Sigma1R agonists in treatment of the condition.
Assuntos
Benzimidazóis/uso terapêutico , Corpo Estriado/metabolismo , Dopamina/metabolismo , Morfolinas/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptores sigma/metabolismo , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Corpo Estriado/efeitos dos fármacos , Etilenodiaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Movimento , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1RESUMO
Supraphysiological oxygen concentrations are toxic to the developing brain. Inflammatory processes increase the risk for brain injury. Sigma-1 receptor agonists are potent suppressors of inflammation-related events and are powerful immunomodulatory and antioxidative agents. Neuroprotective effects of sigma-1 receptor agonists have been described previously for neonatal and adult models of brain injury. The aim of this study was to assess the selective sigma-1 receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084) in models of inflammation-sensitized hyperoxia-induced developing brain injury. For in vivo studies, rat pups were randomly presensitized with 1) lipopolysaccharide or 2) vehicle on postnatal day 3. On day 6, pups received either 1) PRE-084 or 2) vehicle and were subsequently exposed to hyperoxic conditions for 6, 12, or 24 hr. At the end of exposure, animals were sacrificed and brains were processed for caspase-3 analysis using immunohistochemistry and Western blotting. For in vitro studies, oligodendroglial cells were subjected to hyperoxic conditions in the presence or absence of proinflammatory cytokines and PRE-084. Cell membrane integrity and cell viability were assessed by means of lactate dehydrogenase and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assays. Inflammatory presensitization significantly increased hyperoxia-induced injury both in vivo and in vitro. PRE-084 administration did not attenuate damage. Sigma-1 receptor agonists have been described as a promising therapeutic strategy for brain injury. We were not able to confirm this in the present model. The exact mechanisms of action of sigma-1 receptor agonists as well as the pathophysiologic pathways involved in hyperoxia-induced injury in the developing brain remain to be elucidated.
Assuntos
Lesões Encefálicas/metabolismo , Hiperóxia/metabolismo , Inflamação/metabolismo , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Western Blotting , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Imunofluorescência , Hiperóxia/complicações , Imuno-Histoquímica , Inflamação/complicações , Ratos , Ratos Wistar , Receptores sigma/agonistas , Receptor Sigma-1RESUMO
We have recently demonstrated that spinal sigma-1 receptors (Sig-1Rs) mediate pain hypersensitivity in mice and neuropathic pain in rats. In this study, we examine the role of NADPH oxidase 2 (Nox2)-induced reactive oxygen species (ROS) on Sig-1R-induced pain hypersensitivity and the induction of chronic neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Mechanical allodynia and thermal hyperalgesia were evaluated in mice and CCI-rats. Western blotting and dihydroethidium (DHE) staining were performed to assess the changes in Nox2 activation and ROS production in spinal cord, respectively. Direct activation of spinal Sig-1Rs with the Sig-1R agonist, PRE084 induced mechanical allodynia and thermal hyperalgesia, which were dose-dependently attenuated by pretreatment with the ROS scavenger, NAC or the Nox inhibitor, apocynin. PRE084 also induced an increase in Nox2 activation and ROS production, which were attenuated by pretreatment with the Sig-1R antagonist, BD1047 or apocynin. CCI-induced nerve injury produced an increase in Nox2 activation and ROS production in the spinal cord, all of which were attenuated by intrathecal administration with BD1047 during the induction phase of neuropathic pain. Furthermore, administration with BD1047 or apocynin reversed CCI-induced mechanical allodynia during the induction phase, but not the maintenance phase. These findings demonstrate that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.
Assuntos
Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Animais , Etilenodiaminas/farmacologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , NADPH Oxidase 2 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Medula Espinal/metabolismo , Tato , Receptor Sigma-1RESUMO
The σ1 receptor (S1R) is a ligand-regulated non-opioid intracellular receptor involved in several pathological conditions. The development of S1R-based drugs as therapeutic agents is a challenge due to the lack of simple functional assays to identify and classify S1R ligands. We have developed a novel nanoluciferase binary technology (NanoBiT) assay based on the ability of S1R to heteromerize with the binding immunoglobulin protein (BiP) in living cells. The S1R-BiP heterodimerization biosensor allows for rapid and accurate identification of S1R ligands by monitoring the dynamics of association-dissociation of S1R and BiP. Acute treatment of cells with the S1R agonist PRE-084 produced rapid and transient dissociation of the S1R-BiP heterodimer, which was blocked by haloperidol. The effect of PRE-084 was enhanced by calcium depletion, leading to a higher reduction in heterodimerization even in the presence of haloperidol. Prolonged incubation of cells with S1R antagonists (haloperidol, NE-100, BD-1047, and PD-144418) increased the formation of S1R-BiP heteromers, while agonists (PRE-084, 4-IBP, and pentazocine) did not alter heterodimerization under the same experimental conditions. The newly developed S1R-BiP biosensor is a simple and effective tool for exploring S1R pharmacology in an easy cellular setting. This biosensor is suitable for high-throughput applications and a valuable resource in the researcher's toolkit.
Assuntos
Haloperidol , Receptores sigma , Haloperidol/farmacologia , Proteínas de Transporte/metabolismo , Ligantes , Dimerização , Receptores sigma/metabolismoRESUMO
Sigma-1 receptor agonists have recently gained a great deal of interest due to their anti-amnesic, neuroprotective, and neurorestorative properties. Compounds such as PRE-084 or pridopidine (ACR16) are being studied as a potential treatment against cognitive decline associated with neurodegenerative disease, also to include Alzheimer's disease. Here, we performed in vitro experiments using primary neuronal cell cultures from rats to evaluate the abilities of ACR16 and PRE-084 to induce new synapses and spines formation, analyzing the expression of the possible genes and proteins involved. We additionally examined their neuroprotective properties against neuronal death mediated by oxidative stress and excitotoxicity. Both ACR16 and PRE-084 exhibited a concentration-dependent neuroprotective effect against NMDA- and H2O2-related toxicity, in addition to promoting the formation of new synapses and dendritic spines. However, only ACR16 generated dendritic spines involved in new synapse establishment, maintaining a more expanded activation of MAPK/ERK and PI3K/Akt signaling cascades. Consequently, ACR16 was also evaluated in vivo, and a dose of 1.5 mg/kg/day was administered intraperitoneally in APP/PS1 mice before performing the Morris water maze. ACR16 diminished the spatial learning and memory deficits observed in APP/PS1 transgenic mice via PI3K/Akt pathway activation. These data point to ACR16 as a pharmacological tool to prevent synapse loss and memory deficits associated with Alzheimer's disease, due to its neuroprotective properties against oxidative stress and excitotoxicity, as well as the promotion of new synapses and spines through a mechanism that involves AKT and ERK signaling pathways.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Ratos , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , N-Metilaspartato/farmacologia , N-Metilaspartato/uso terapêutico , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Aprendizagem em LabirintoRESUMO
Ethanol-induced conditioned taste aversion (CTA) is greater in late adolescence or young adulthood than in early adolescence. The role of the sigma receptor system in this age-related difference has not been extensively explored, particularly in female rats. This study assessed the effects of the activation of sigma-1 receptors (S1-R), via the selective S1-R agonist PRE-084, on ethanol-induced CTA at early or at terminal adolescence/emerging adulthood (28 or 56 days-old at the beginning of the procedures, respectively) in female Wistar rats. The modulation of binge-like ethanol intake by PRE-084 was assessed at terminal adolescence. S1-R activation at the acquisition of ethanol-induced CTA attenuated such learning at terminal but not at early adolescence. PRE-084 did not significantly affect ethanol binge drinking in the terminal adolescents. These results highlight the role of S1-R in ethanol-induced CTA and suggest that differential functionality of this transmitter system may underlie age-specific sensitivities to the aversive effects of ethanol.
Assuntos
Etanol , Paladar , Consumo de Bebidas Alcoólicas , Animais , Aprendizagem da Esquiva , Etanol/farmacologia , Feminino , Morfolinas , Ratos , Ratos Wistar , Receptores sigma , Receptor Sigma-1RESUMO
BACKGROUND: Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is associated with neuroinflammation and subsequent cell death following traumatic brain injury (TBI). The sigma-1 receptor (Sig-1R) acts as a dynamic pluripotent modulator of fundamental cellular processes at the mitochondria-associated membranes (MAMs). The activation of Sig-1R is neuroprotective in a variety of central nervous system diseases, but its impact on ER stress induced by traumatic brain injury is not known. This study investigated the role of Sig-1R in regulating the ER stress-mediated microglial activation and programmed cell death (apoptosis and pyroptosis) induced by TBI. METHODS: Ten human brain tissues were obtained from The Tianjin Medical University General Hospital. Four normal brain tissues were obtained from patients who underwent surgery for cerebral vascular malformation, through which peripheral brain tissues were isolated. Six severe TBI tissues were from patients with brain injury caused by accidents. None of the patients had any other known neurological disorders. Mice with Sig-1R deletion using CRISPR technology were subjected to controlled cortical impact-induced injury. In parallel, wild type C57BL/6J mice were analyzed for outcomes after they were exposed to TBI and received the Sig-1R agonist PRE-084 (10 mg/kg daily for three days) either alone or in combination with the Sig-1R antagonist BD-1047 (10 mg/kg). RESULTS: The expression of Sig-1R and the 78 kDa glucose-regulated protein, a known UPR marker, were significantly elevated in the injured cerebral tissues from TBI patients and mice subjected to TBI. PRE-084 improved neurological function, restored the cerebral cortical perfusion, and ameliorated and brain edema in C57BL/6J mice subjected to TBI by reducing endoplasmic reticulum stress-mediated apoptosis, pyroptosis, and microglia activation. The effect of PRE-084 was abolished in mice receiving Sig-1R antagonist BD-1047. CONCLUSIONS: ER stress and UPR were upregulated in TBI patients and mice subjected to TBI. Sig-1R activation by the exogenous activator PRE-084 attenuated microglial cells activation, reduced ER stress-associated programmed cell death, and restored cerebrovascular and neurological function in TBI mice.
RESUMO
Purpose: We aimed to investigate the protective effect of sigma 1 receptor agonist and antagonist, PRE084 and BD1047, respectively, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods: Thirty male ICR mice were randomly divided into 5 groups: control, 50% ethanol, colitis, PRE084 + colitis, and combined (PRE084 + BD1047 + colitis). Colitis was induced by intrarectal administration of TNBS. PRE084 and BD1047 were injected daily, starting 3 days before colitis induction. Distal colon tissue was excised for histopathological evaluation, and levels of glutathione (GSH), superoxide dismutase (SOD), myeloperoxidase (MPO), and lipid peroxidation were determined. Results: Colitis caused weight loss, mucosal damage, upregulation of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, MPO, and thiobarbituric acid reactive substance activities, and downregulation of GSH and SOD activities. These changes caused by TNBS-induced colitis were significantly ameliorated by PRE084 pretreatment. However, the combined pretreatment with BD1047 significantly attenuated the protective effect of PRE084, thereby reverting to the colitis-induced state. Conclusion: We conclude that the sigma 1 receptor agonist PRE084 exhibits significant protective effects against TNBS-induced colitis, which appears to be at least partly mediated by the inhibition of inflammation and oxidative stress, and enhancement of antioxidant properties. Collectively, these results suggest that PRE084 might be an effective drug for the treatment of ulcerative colitis.
RESUMO
Peripheral nerve injuries lead to the loss of motor, sensory and autonomic functions in the territories supplied by the injured nerve. Currently, nerve injuries are managed by surgical repair procedures, and there are no effective drugs in the clinic for improving the capacity of axonal regeneration. Sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperon protein involved in many functions, including neuroprotection and neuroplasticity. A few previous studies using Sig-1R ligands reported results that suggest this receptor as a putative target to enhance regeneration. The aim of this study was to evaluate the possible effects of Sig-1R ligands on axonal regeneration in a sciatic nerve section and repair model in mice. To this end, mice were treated either with the Sig-1R agonist PRE-084 or the antagonist BD1063, and a Sig-1R knock-out (KO) mice group was also studied. The electrophysiological and histological data showed that treatment with Sig-1R ligands, or the lack of this protein, did not markedly modify the process of axonal regeneration and target reinnervation after sciatic nerve injury. Nevertheless, the nociceptive tests provided results indicating a role of Sig-1R in sensory perception after nerve injury, and immunohistochemical labeling indicated a regulatory role in inflammatory cell infiltration in the injured nerve.
Assuntos
Traumatismos dos Nervos Periféricos , Receptores sigma , Animais , Ligantes , Camundongos , Camundongos Knockout , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Receptores sigma/agonistas , Receptor Sigma-1RESUMO
Mitochondria are essential for neuronal survival and function, and mitochondrial dysfunction plays a critical role in the pathological development of Parkinson's disease (PD). Mitochondrial quality control is known to contribute to the survival of dopaminergic (DA) neurons, with mitophagy being a key regulator of the quality control system. In this study, we show that mitophagy is impaired in the substantia nigra pars compacta (SNc) of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treatment with the sigma-1 receptor (Sig 1R) agonist 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) reduced loss of DA neurons, restored motor ability and MPTP-induced damage to mitophagy activity in the SNc of PD-like mice. Additionally, knockdown of Sig 1R in SH-SY5Y DA cells inhibited mitophagy and enhanced 1-methyl-4-phenylpyridinium ion (MPP+) neurotoxicity, whereas application of the Sig 1R selective agonist SKF10047 promoted clearance of damaged mitochondria. Moreover, knockdown of Sig 1R in SH-SY5Y cells resulted in decreased levels of p-ULK1 (Unc-51 Like Autophagy Activating Kinase 1) (Ser555), p-TBK1 (TANK Binding Kinase 1) (Ser172), p-ubiquitin (Ub) (Ser65), Parkin recruitment, and stabilization of PTEN-induced putative kinase 1 (PINK1) in mitochondria. The present data provide the first evidence for potential roles of PINK1/Parkin in Sig 1R-modulated mitophagy in DA neurons.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Transtornos Parkinsonianos/metabolismo , Proteínas Quinases/metabolismo , Receptores sigma/genética , Ubiquitina-Proteína Ligases/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Morfolinas/farmacologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Fenazocina/análogos & derivados , Fenazocina/farmacologia , Fosforilação , Proteínas Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores sigma/agonistas , Receptores sigma/metabolismo , Transdução de Sinais , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Ubiquitina/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Receptor Sigma-1RESUMO
In traumatic spinal cord injury, the initial trauma is followed by a cascade of impairments, including excitotoxicity and calcium overload, which ultimately induces secondary damages. The sigma-1 receptor is widely expressed in the central nervous system and is acknowledged to play a key role in calcium homeostasis. Treatments with agonists of the sigma-1 receptor induce beneficial effects in several animal models of neurological diseases. In traumatic injury the use of an antagonist of the sigma-1 receptor reversed several symptoms of central neuropathic pain. Here, we investigated whether sigma-1 receptor activation with PRE-084 is beneficial or detrimental following SCI in mice. First, we report that PRE-084 treatment after injury does not improve motor function recovery. Second, using ex vivo diffusion weighted magnetic resonance imaging completed by histological analysis, we highlight that σ1R agonist treatment after SCI does not limit lesion size. Finally, PRE-084 treatment following SCI decreases NeuN expression and increases astrocytic reactivity. Our findings suggest that activation of sigma-1 receptor after traumatic spinal cord injury is detrimental on tissue preservation and motor function recovery in mice.
RESUMO
To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson's disease. It was recently observed in a rodent model of Alzheimer's disease that the interaction between the a7 subtype of nicotinic acetylcholine receptor (a7-nAChR) and sigma-1 receptor (s1-R) could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson's disease. In this context, the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide (PHA) 543613 as an a7-nAChR agonist and 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate (PRE)-084 as a s1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson's disease. The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 post-lesion. Although no effect was noticed in the amphetamine-induced rotation test, our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons (15-20%), assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra. Furthermore, this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion, i.e, the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum, and the CD11b and glial fibrillary acidic protein staining in the substantia nigra. Hence, this study reports for the first time that concomitant activation of a7-nAChR and s1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation. The study was approved by the Regional Ethics Committee (CEEA Val de Loire n°19) validated this protocol (Authorization N°00434.02) on May 15, 2014.
RESUMO
The discovery of a highly selective putative sigma-1 (σ1) receptor agonist, PRE-084, has revealed the numerous potential uses of this receptor subtype as a therapeutic target. While much work has been devoted to determining the role of σ1 receptors in normal and pathophysiological states in the nervous system, recent work suggests that σ1 receptors may be important for modulating functions of other tissues. These discoveries have provided novel insights into σ1 receptor structure, function, and importance in multiple intracellular signaling mechanisms. These discoveries were made possible by σ1 receptor-selective agonists such as PRE-084. The chemical properties and pharmacological actions of PRE-084 will be reviewed here, along with the expanding list of potential therapeutic applications for selective activation of σ1 receptors.
Assuntos
Morfolinas/farmacologia , Receptores sigma/metabolismo , Animais , Ensaios Clínicos como Assunto , Humanos , Terapia de Alvo Molecular , Morfolinas/química , Morfolinas/uso terapêutico , Receptor Sigma-1RESUMO
While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3ß-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3ß-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.