Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3209-3225.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931083

RESUMO

Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.


Assuntos
Peroxissomos , Receptores Citoplasmáticos e Nucleares , Proteínas de Transporte/metabolismo , Humanos , Ligases/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/química , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina/metabolismo
2.
Mol Microbiol ; 122(1): 11-28, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38770591

RESUMO

The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Fator sigma , Óperon/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fator sigma/metabolismo , Fator sigma/genética , Estresse Fisiológico/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcrição Gênica , Endorribonucleases
3.
J Cell Sci ; 136(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552037

RESUMO

Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.


Assuntos
Proteínas de Membrana , Peroxissomos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Membranas Intracelulares/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648826

RESUMO

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Assuntos
Anti-Infecciosos , Colicinas , Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monossacarídeos , Estresse Oxidativo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Anti-Infecciosos/farmacologia , Colicinas/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Bacteriol ; 206(9): e0022724, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39171915

RESUMO

As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE: Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Glicerol , Peróxido de Hidrogênio , Boca , Streptococcus mutans , Glicerol/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/crescimento & desenvolvimento , Boca/microbiologia , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética , Humanos , Biofilmes/crescimento & desenvolvimento
6.
J Bacteriol ; 206(10): e0015524, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39297619

RESUMO

We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.


Assuntos
Proteínas de Bactérias , Galactose , Regulação Bacteriana da Expressão Gênica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/enzimologia , Galactose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hexosefosfatos/metabolismo , Hexosefosfatos/genética , Redes e Vias Metabólicas/genética , Fosfotransferases/metabolismo , Fosfotransferases/genética
7.
Am J Med Genet A ; 194(11): e63804, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38942733

RESUMO

Pseudo-TORCH Syndrome (PTS) encompasses a heterogeneous group of genetic disorders that may clinically and radiologically resemble congenital TORCH infections. These mimickers present with overlapping features manifested as intracranial and systemic abnormalities. Collagen type IV alpha 1 chain (COL4A1)-related diseases, characterized by autosomal dominant inheritance, exhibit a diverse phenotypic spectrum involving cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities. Cerebrovascular manifestations range from small-vessel brain disease to large vessel abnormalities, resulting in intracerebral hemorrhage, periventricular leukoencephalopathy, and ventriculomegaly. Additional features include cortical malformations, eye defects, arrhythmias, renal disease, muscular abnormalities, and hematological manifestations. Age of onset varies widely, and phenotypic variability exists even among individuals with the same variant. In this study, we present two cases of COL4A1-related disorder mimicking congenital TORCH infections, highlighting the importance of recognizing genetic mimics in clinical practice.


Assuntos
Colágeno Tipo IV , Genótipo , Humanos , Colágeno Tipo IV/genética , Masculino , Feminino , Neuroimagem/métodos , Diagnóstico Diferencial , Fenótipo , Lactente , Mutação/genética , Encéfalo/diagnóstico por imagem , Encéfalo/anormalidades , Encéfalo/patologia
8.
Biotechnol Bioeng ; 121(7): 2091-2105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568751

RESUMO

Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on ß-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.


Assuntos
Engenharia Metabólica , Peroxissomos , Peroxissomos/metabolismo , Peroxissomos/genética , Engenharia Metabólica/métodos , Sinais de Orientação para Peroxissomos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
9.
Nanotechnology ; 35(32)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38710165

RESUMO

For deep ultraviolet (UV-C) photodetectors, gallium oxide (Ga2O3) is a suitable candidate owing to its intrinsic ultra-wide band gap and high stability. However, its detection is limited within the UV-C region, which restricts it to cover a broad range, especially in visible and near-infrared (NIR) region. Therefore, constructing a heterostructure of Ga2O3with an appropriate material having a narrow band gap is a worthwhile approach to compensate for it. In this category, PtS2group-10 transitional metal dichalcogenide stands at the top owing to its narrow band gap (0.25-1.65 eV), high mobility, and stability for heterostructure synthesis. Moreover, heterostructure with Ga2O3sensing in UV and PtS2broad response in visible and IR range can broaden the spectrum from UV to NIR and to build broadband photodetector. In this work, we fabricated a 2D-3D PtS2-x/Ga2O3heterostructure based broadband photodetector with detection from UV-C to NIR region. In addition, the PtS2-x/Ga2O3device shows a high responsivity of 38.7 AW-1and detectivity of 4.8 × 1013Jones under 1100 nm light illumination at 5 V bias. A fast response of 90 ms/86 ms illustrates the device's fast speed. An interface study between the PtS2-xand Ga2O3was conducted using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy (UPS) which confirmed type-I band alignment. Finally, based on their band alignment study, a carrier transport mechanism was proposed at the interface. This work offers a new opportunity to fabricate large-area high-performance 2D-3D heterostructures based photodetectors for future optoelectronics devices.

10.
Cell Mol Biol Lett ; 29(1): 114, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198723

RESUMO

BACKGROUND: Stroke is a type of acute brain damage that can lead to a series of serious public health challenges. Demonstrating the molecular mechanism of stroke-related neural cell degeneration could help identify a more efficient treatment for stroke patients. Further elucidation of factors that regulate microglia and nuclear factor (erythroid-derived 2)-like 1 (Nrf1) may lead to a promising strategy for treating neuroinflammation after ischaemic stroke. In this study, we investigated the possible role of pterostilbene (PTS) in Nrf1 regulation in cell and animal models of ischaemia stroke. METHODS: We administered PTS, ITSA1 (an HDAC activator) and RGFP966 (a selective HDAC3 inhibitor) in a mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and a model of microglial oxygen‒glucose deprivation/reperfusion (OGD/R). The brain infarct size, neuroinflammation and microglial availability were also determined. Dual-luciferase reporter, Nrf1 protein stability and co-immunoprecipitation assays were conducted to analyse histone deacetylase 3 (HDAC3)/Nrf1-regulated Nrf1 in an OGD/R-induced microglial injury model. RESULTS: We found that PTS decreased HDAC3 expression and activity, increased Nrf1 acetylation in the cell nucleus and inhibited the interaction of Nrf1 with p65 and p65 accumulation, which reduced infarct volume and neuroinflammation (iNOS/Arg1, TNF-α and IL-1ß levels) after ischaemic stroke. Furthermore, the CSF1R inhibitor PLX5622 induced elimination of microglia and attenuated the therapeutic effect of PTS following MCAO/R. In the OGD/R model, PTS relieved OGD/R-induced microglial injury and TNF-α and IL-1ß release, which were dependent on Nrf1 acetylation through the upregulation of HDAC3/Nrf1 signalling in microglia. However, the K105R or/and K139R mutants of Nrf1 counteracted the impact of PTS in the OGD/R-induced microglial injury model, which indicates that PTS treatment might be a promising strategy for ischaemia stroke therapy. CONCLUSION: The HDAC3/Nrf1 pathway regulates the stability and function of Nrf1 in microglial activation and neuroinflammation, which may depend on the acetylation of the lysine 105 and 139 residues in Nrf1. This mechanism was first identified as a potential regulatory mechanism of PTS-based neuroprotection in our research, which may provide new insight into further translational applications of natural products such as PTS.


Assuntos
Histona Desacetilases , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Estilbenos , Animais , Histona Desacetilases/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376208

RESUMO

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


Assuntos
Polaridade Celular/fisiologia , Escherichia coli/metabolismo , Transporte Proteico/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Açúcares/metabolismo , Tirosina/metabolismo
12.
Knee Surg Sports Traumatol Arthrosc ; 32(6): 1462-1469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629758

RESUMO

PURPOSE: The aim of this study was to investigate whether malrotation of lateral knee radiographs influences posterior tibial slope (PTS) measurements. METHODS: Lateral knee radiographs of all patients who underwent knee surgery at a single institution between June 2022 and January 2023 and received multiple lateral knee radiographs were included. Radiographs were categorised as malrotated lateral knee radiographs or lateral knee radiographs based on the radiographic distance between the medial and lateral posterior femoral condyles. Medial PTS (MPTS) and lateral PTS (LPTS) were evaluated on malrotated lateral knee radiographs and lateral knee radiographs and compared using the paired t test. Intra- and interrater reliability between four raters were assessed for MPTS and LPTS measurements. RESULTS: A total of 92 lateral knee radiographs (46 pairs of malrotated lateral knee radiographs and lateral knee radiographs; 50.0% right side) from 46 patients (33.2 ± 12.4 years, 69.6% male) were included. Mean posterior femoral condyle distance in malrotated lateral knee radiographs was 8.1 ± 4.4 mm. Overall, MPTS and LPTS were significantly higher on malrotated lateral knee radiographs versus lateral knee radiographs (medial: 10.5 ± 3.2° vs. 9.7 ± 3.5°, p < 0.05; lateral: 10.6 ± 3.4° vs. 9.7 ± 3.3°, p < 0.05). Mean absolute difference between MPTS and LPTS on malrotated lateral knee radiographs versus lateral knee radiographs were |1.9| ± |1.5|° and |2.0| ± |1.8|°, respectively. Intrarater reliability was 'moderate' and interrater reliability was 'good' for both MPTS and LPTS. CONCLUSION: Malrotation of lateral knee radiographs led to a significant distortion of both the MPTS and LPTS. In clinical practice, attention should be placed on the (mal)rotation of lateral knee radiographs, especially in patients for whom a slope-correcting osteotomy is being discussed. LEVEL OF EVIDENCE: Level IV.


Assuntos
Articulação do Joelho , Radiografia , Tíbia , Humanos , Masculino , Feminino , Adulto , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto Jovem , Variações Dependentes do Observador
13.
J Bacteriol ; 205(1): e0035222, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36468868

RESUMO

Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.


Assuntos
Cárie Dentária , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/metabolismo , Glucose/metabolismo , Streptococcus mutans/genética , Ácido Láctico/metabolismo , Ácidos/metabolismo , Piruvatos/metabolismo , Biofilmes
14.
Plant J ; 111(2): 567-582, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603488

RESUMO

Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.


Assuntos
Sinais de Orientação para Peroxissomos , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Animais , Peroxissomos/metabolismo , Plantas
15.
Mol Microbiol ; 117(2): 525-538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923680

RESUMO

Streptococcus pyogenes, also known as group A Streptococcus or GAS, is a human-restricted pathogen causing a diverse array of infections. The ability to adapt to different niches requires GAS to adjust gene expression in response to environmental cues. We previously identified the abundance of biometals and carbohydrates led to natural induction of the Rgg2/3 cell-cell communication system (quorum sensing, QS). Here we determined the mechanism by which the Rgg2/3 QS system is stimulated exclusively by mannose and repressed by glucose, a phenomenon known as carbon catabolite repression (CCR). Instead of carbon catabolite protein A, the primary mediator of CCR in Gram-positive bacteria; CCR of Rgg2/3 requires the PTS regulatory domain (PRD)-containing transcriptional regulator Mga. Deletion of Mga led to carbohydrate-independent activation of Rgg2/3 by down-regulating rgg3, the QS repressor. Through phosphoablative and phosphomimetic substitutions within Mga PRDs, we demonstrated that selective phosphorylation of PRD1 conferred repression of the Rgg2/3 system. Moreover, given the carbohydrate specificity mediating Mga-dependent governance over Rgg2/3, we tested mannose-specific PTS components and found the EIIA/B subunit ManL was required for Mga-dependent repression. These findings provide newfound connections between PTSMan , Mga, and QS, and further demonstrate that Mga is a central regulatory nexus for integrating nutritional status and virulence.


Assuntos
Repressão Catabólica , Streptococcus pyogenes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Percepção de Quorum/genética , Streptococcus pyogenes/metabolismo
16.
Small ; : e2307386, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084447

RESUMO

Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2 S4 nanosheets (PtSA -ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in * CH3 CHOH and promote the desorption of * CH3 CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA -ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1 ) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.

17.
Biol Chem ; 404(2-3): 121-133, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36279206

RESUMO

Accurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast Saccharomyces cerevisiae, peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins. However, what defines this substrate selectivity remains uncovered. Here, we used unbiased screens alongside directed experiments to identify the properties underlying Pex9 targeting specificity. We find that the specificity of Pex9 is largely determined by the hydrophobic nature of the amino acid preceding the PTS1 tripeptide of its cargos. This is explained by structural modeling of the PTS1-binding cavities of the two factors showing differences in their surface hydrophobicity. Our work outlines the mechanism by which targeting specificity is achieved, enabling dynamic rewiring of the peroxisomal proteome in changing metabolic needs.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxissomos/metabolismo
18.
Appl Environ Microbiol ; 89(10): e0101723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787570

RESUMO

The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Carboidratos , Estresse Oxidativo
19.
Appl Environ Microbiol ; 89(3): e0006623, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36840592

RESUMO

Lactococcin A (LcnA), a class IId bacteriocin, induces membrane leakage and cell death by specifically binding to the membrane receptor-mannose phosphotransferase system (man-PTS), as is the case for pediocin-like (class IIa) bacteriocins. The cognate immunity protein of bacteriocins, which protects the producer cell from its own bacteriocin, recognizes and binds to the bacteriocin-man-PTS complex, consequently blocking membrane leakage. We previously deciphered the mode of action and immunity of class IIa bacteriocins. Here, we determined the structure of the ternary complex of LcnA, LciA (i.e., the immunity protein), and its receptor, i.e., the man-PTS of Lactococcus lactis (ll-man-PTS). An external loop on the membrane-located component IIC of ll-man-PTS was found to prevent specific binding of the N-terminal region of LcnA to the site recognized by pediocin-like bacteriocins. Thus, the N-terminal ß-sheet region of LcnA recognized an adjacent site on the extracellular side of ll-man-PTS, with the LcnA C-terminal hydrophobic helix penetrating into the membrane. The cytoplasmic cleft formed within the man-PTS Core and Vmotif domains induced by embedded LcnA from the periplasmic side is adopted by the appropriate angle between helices H3 and H4 of the N terminus of LciA. The flexible C terminus of LciA then blocks membrane leakage. To summarize, our findings reveal the molecular mechanisms of action and immunity of LcnA and LciA, laying a foundation for further design of class IId bacteriocins. IMPORTANCE Class IId (lactococcin-like) bacteriocins and class IIa (pediocin-like) bacteriocins share a few similarities: (i) both induce membrane leakage and cell death by specifically binding the mannose phosphotransferase system (man-PTS) on their target cells, and (ii) cognate immunity proteins recognize and bind to the bacteriocin-man-PTS complex to block membrane leakage. However, class IId bacteriocins lack the "pediocin box" motif, which is typical of class IIa bacteriocins, and basically target only lactococcal cells; in contrast, class IIa bacteriocins target diverse bacterial cells, but not lactococcal cells. We previously solved the structure of class IIa bacteriocin-receptor-immunity ternary complex from Lactobacillus sakei. Here, we determined the structure of the ternary complex of class IId bacteriocin LcnA, its cognate immunity protein LciA, and its receptor, the man-PTS of Lactococcus lactis. By comparing the interactions between man-PTS and class IIa and class IId bacteriocins, this study affords some clues to better understand the specificity of bacteriocins targeting the mannose phosphotransferase system.


Assuntos
Bacteriocinas , Lactococcus lactis , Pediocinas/metabolismo , Manose/metabolismo , Bacteriocinas/metabolismo , Lactococcus lactis/metabolismo , Fosfotransferases/metabolismo
20.
Vasc Med ; 28(6): 592-603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792749

RESUMO

The spectrum of venous thromboembolic (VTE) disease encompasses both acute deep venous thrombosis (DVT) and chronic postthrombotic changes (CPC). A large percentage of acute DVT patients experience recurrent VTE despite adequate anticoagulation, and may progress to CPC. Further, the role of iliocaval venous obstruction (ICVO) in lower-extremity VTE has been increasingly recognized in recent years. Imaging continues to play an important role in both acute and chronic venous disease. Venous duplex ultrasound remains the gold standard for diagnosing acute VTE. However, imaging of CPC is more complex and may involve computed tomography, magnetic resonance, contrast-enhanced ultrasound, or intravascular ultrasound. In this narrative review, we aim to discuss the full spectrum of venous disease imaging for both acute and chronic venous thrombotic disease.


Assuntos
Síndrome Pós-Trombótica , Tromboembolia Venosa , Trombose Venosa , Humanos , Tromboembolia Venosa/diagnóstico por imagem , Veias , Trombose Venosa/diagnóstico por imagem , Extremidade Inferior/irrigação sanguínea , Doença Crônica , Doença Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA